
Page 1 of 16

Updated Nov '08

Manifesto, management

and money

The future of collaborative
software development.

Peter Fox1, January 2007

1 Introduction

2 Creating bright ideas - Manifesto

3 Developing quality software - Volunteer companies

4 A model for financial and technical development

5 Conclusion

6 Appendices

Summary
This paper starts from the premise that the software project

paradigm composed of a team of volunteers, as for example used

by many open-source developments is basically A Good Thing,

but (a) in the main is not being done very well (b) lacks a sound

reward structure and (c) lacks an infrastructure to facilitate the

cross-fertilization of ideas, competitive approaches and fluid

application of skills.

So what can be done to channel bright ideas, enthusiasm and

technical prowess into top quality, top value products?

1 Separation of the 'creation of bright ideas' from the

'production of quality software'.

2 Improving the standard of collaborative teams.

The first is tackled by 'Manifestos' (equivalent perhaps to a script

for a play or film) that set out what the idea is and why it is

worth working on and some details about the style of production.

These are then published for criticism and adoption by the

developer community. The second is dealt with by simple

analysis of how we expect a collaborative team to be structured

and perform. The term 'Volunteer Company' (where volunteer

doesn't necessarily mean unpaid) is used to describe a group

which probably has an existence separate from a specific project

but may specialise in some way. The key idea is that the

'expensive' process of becoming an effective team doesn't get

repeated for each project and the emphasis changes subtly from

features of the product to competence and application of team

members.

The other matter, that of getting paid, earning money,

developing a career and respect among one's peers often gets

fudged by filing under 'too difficult and too boring'. It turns out

that we already have a thriving, 500 year-old, working model to

deal with this - the theatre. The analogies between the

performing arts and software development are examined to show

how Volunteer Companies fall neatly into place as a very

important and socially valuable enterprise, worth supporting

financially.

When these are used together, today's 'buskers' and 'ants and

twig' methods can be converted into tomorrow's respectable,

organised, properly rewarded and socially desirable activity.

There are more details of how to construct manifestos and

volunteer companies in the appendices.

1 Introduction
The urge to program
I am not getting paid to write this. I'm doing it because it is (a)

more interesting that 'real work' and (b) I believe it is a valuable

contribution to the Lives Of Men; that is something Worth

Doing.2 Some people start blogging for campaigning reasons or

boredom or a desire to experiment with the technology of

expressing ideas. Programmers are a similar but slightly

different breed: They get a buzz from making useful things and

fixing 'broken' things. For example I wanted a calendar that

would show the phase and visibility of the moon.3 Since I

wanted a diary anyway I wrote my own to suit my own tastes.

Now where did I get the necessary astronomical code from?

Somebody who had generously made their code available on the

Internet. Where did they get their astronomical calculations on

which to base their code from? From books which are the

concrete expression of the scientific knowledge base, which in

turn are layered upon previous knowledge many times over.

From this we can see that making knowledge and programs

available is a virtuous circle: Now any astronomer will be able to

use my program to make a date for moonwatching.... ...If I make

it available.

The 'use, enjoy, benefit' cycle.
If someone steals your property we call that theft and look for a

legal remedy, preferably imposed by a society which considers

this to be abhorrent as a matter of public policy. But what if you

give something away to somebody who sells it? That can leave a

very nasty taste in the mouth. But nobody forced you to give it
away. Well actually this isn't quite true there are three situations
where you are forced to give it away:

1 If you patent an idea : In return for official recognition of

ownership and rights attached to that ownership you must

make the complete method public.4

2 If in order to live you have to disclose all the details. I

could go to your poetry reading with a tape recorder and

print your words in my anthology.

3 If you are working in an environment where disclosure,

peer review and free exchange of ideas is accepted as the

norm.

As we saw above, there are great benefits in sharing ideas,

formulas and code, so even though there is no forcing it is highly
desirable to keep enriching the knowledge-base and code-base.
The more there is the greater the benefits that should result : All

for the Good Of Mankind. This method has been fundamental to

the rapid evolution of the Internet's protocols and

implementations. Various licensing schemes such as GPL and

Creative Commons have evolved to encourage contributors to

keep enlarging the knowledge and method universe. There are

two principle issues which are not always compatible:

• Once freely available-always freely available, and

• Restrictions on exploitation

The principle has been established that it is possible to

contribute without being 'ripped-off' but some practical details

remain unsatisfactory. For most people, 'reward' remains the

warm glow of knowing that somebody, somewhere, sometime

might benefit from their work.

We have gone on this diversion in order to set the scene in which

some of the most creative and talented people on the planet

1
Peter Fox is a freelance business consultant living and working
in Essex, England

2
As I write this a neighbour is coaching the lads football team
and another lady is cooking charity breakfasts.

3
Nice to know if you're cycling through the countryside at
night.

4
In the UK Software and mathematical formulas are not
patentable - (Let's hope it stays that way).

Page 2 of 16

contribute for a very uncertain reward. This issue will be dealt

with in section four. However, and this is important, FOSS is not

the only model for collaborative development. If the goals of

building better quality software are met then there should be

plenty of scope for making a reasonable charge for something

that does what it says, and is reliable and supported. Or to put it

another way: Someone itching to program stands a better

chance of getting some reward if they are part of a professional

team who value their reputation than 'going alone' and simply

not having the resources to cover all the bases.5 There is no

fundamental reason why a commercial operation looking for

particular talent shouldn't advertise providing of course that the

terms of participation are made clear.

Underachievement
If you skip along to Sourceforge6 you'll see hundreds of projects

that started with one developer, ended with one developer and

managed to release something that might charitably be called

'proof of concept' then died. Let's applaud the naïve enthusiast

for 'having a go' - Already they have achieved more than the 'why

bother' masses.

Some projects get further, typically having been matured before

being released, or having limited objectives - There can be lots of

useful stuff here, but now, without a life-force, these projects

have stagnated and perhaps become broken with the passage of

time.7 8 So the project activity has ceased although the results

may be useable if not well supported.

A few projects start with or acquire a nucleus of developers who

continuously improve, repair and enrich their baby. With time

the focus of the project may change, factions might break-away

to concentrate on matters of private interest and so on. These

are living entities fed by dedicated slog during the midnight

geek-hours. (This is not to suggest that Use-Enjoy-Benefit

projects are particularly susceptible to organisational disruption,

after all traditional commercial outfits can cease trading or get

taken over and drowned - and when that happens the

consequences are often terminal which isn't the case with OSS.)

The adage 'you get what you pay for' is not true as far as this

field of endeavour is concerned. Unuseable, badly supported,

limited life-span, corrupting and simply non-functional software

can be acquired for free or commercially. Of course, like any

other product there is more to the quality of software than 'does it

work when taken out of the box'. Here some of the quality issues

are 'in the eye of the beholder' and others can be classified as

fairly fundamental value-for-money issues. For example a

particular feature or 'cool interface' may be a specific customer

requirement; while following functional specifications

accurately, freedom from critical bugs, adequate documentation

and adapting the program to deal with changing circumstances

over an appropriate lifespan are inherent in software quality.

These are fairly vague terms when used in general, but anyone

who has started enthusiastically and full of confidence with a

tool only to discover a rake of intractable shortcomings will be

understand how flaws, and inability to fix them, reduce the

edifice of fine ideas to a heap of practical rubble.

It is worth repeating that poor quality software (whatever your

particular 'definition' of quality is) is by no means the preserve of

hobbyist volunteers. Some one-man-bands have produced

spectacularly excellent software, while some large organisations

who should know better start by releasing an awful product then

compound the problem by lack of support. In the next section I

will be asking: What is a good method to ensure that all bases

are covered when it comes to producing quality results - with

particular emphasis on how cooperating volunteers should

organise themselves.

Collaborative doesn't have to be FOSS
As we'll see in section 4 there may be a way for good developers

to earn good money, but the overwhelming temptation is to use a

low-overhead, low-revenue model and just get satisfaction from

doing something interesting and hopefully useful.

At this point we're stuck for a descriptive term that is not

necessarily tied to 'free' or 'open source'. I suggest Volunteer
Company. (Where 'volunteer' may or may not mean unpaid.)
Now we can look at how such a collaboration might be put

together.

5
There are some magnificent one-man efforts and all credit to
their developers, but I wonder if they might not be better with
a couple of assistants.

6
The best known home of collaborative OSS projects.
www.sourceforge.net

7
There is a whimsical term "bit rot" which describes how
programs that once worked now fail. This is very common as
operating environments and cooperating programs evolve.

8
You might be tempted to say that by this definition Beethoven's
fifth symphony has 'stagnated'. The difference is that there are
living experts who study it and adapt it for current day
presentation.

Page 3 of 16

2 Creating bright ideas

 - The manifesto
In this part we'll describe a foundation method for constructing

collaborative software projects. It is not fiddly, bureaucratic or

difficult and can be used by one-man-bands. In fact it is simply

a matter of establishing the goals and filling roles. In appendix

D we'll suggest a possible organisational structure - although

this is not really part of the template.

Before starting : The manifesto
Which is the best system for harnessing distributed developer

efforts:

• Thousands of : "I could code this...I tried...but now need

help"

• The world needs another font management program.
• I've written a framework - sorry about the

documentation
or

• Tens of : Larger applications, standards or protocols,

addressing issues and exploring possibilities.

• Isn't it time the flaws in SMTP were addressed.
• I can see how the system would work and how it fills a

genuine need - here is the demonstrator.

Clearly the latter, the difference being that the 'workers unite

before marching on the capital'. This is the Achilles heel of free-
range software. The inability to collect a team of energetic but

tractable workers able to coordinate their efforts to deliver

something approaching the original vision.

It seems to me that we need two things to deal with this:

1 Visionaries to specify why and how and what they want to

achieve

2 A soap-box corner where interested parties can congregate

A 'manifesto' is a method to deliver the first of these.

From original manifesto...

The original manifesto is likely to be the encapsulation of a

vision, quite likely of one person. The process starts with an idea

promoted in the form of a paper which includes:

• Reasons why the a project like this is worthwhile (Including

need, opportunity, or simply new exploration.)

• How the project might be implemented (Including

organisation and technology)

... to working blueprint
Which is clarified and firmed-up by a collaborative effort in order

to determine

• Exact scope (Perhaps in stages and/or modules)

• Prove the validity of the concept and availability of skills.

(Due to the nature of the beast these have to be dealt with

together.)

And also develop an implementation plan

• Importantly, what development model to use.

• What intellectual property/licence to use

• What technologies will be exploited...

• ...And developed or applied in novel ways (Possibly leading

to an IP agenda)

And also develop an exploitation plan

• What will be delivered

• How it will extend or replace existing applications...

• ...or open new fields of application of computerisation

And (management issues)

• Success factors

• Failure factors

• Resource investment requirements

• Probable rewards

Of course the size and detail of the manifesto would be

appropriate to the size and nature of the project. If all you're

trying to do is rewrite your home-grown utility to make it

available across more platforms with professional documentation

and support then the manifesto should have few unknowns and

be simple to write.

There's no need for grand mega-project objectives. It might be "I
want an add-on to Firefox that will do Foo but the
implementation has me baffled. I'd like to learn but need a
mentor who has done this sort of thing before. This might lead
to Bar and Buz"

Appendices A and B go into manifestos in more detail.

Implications of starting with a

manifesto
The urge to code is very strong. Later I'll describe how this

might be usefully channelled in the early stages, but for the time

being, an ounce of preparation and method clarification is worth

a ton of perspiration and mission-creep.

The person or people with the vision must be literate, able to

structure a paper and able to explain the significant points. Of

course this implies they must be able to identify the significant

points and tie them together sensibly. Flowing literary prowess

isn't required - but who wants to work with a confused non-

communicator?

A first, private review might be useful to explore vague issues

and clarify content. This is the place where one would hope

awkward questions such as "Why is your wheel so much better

than all the others already invented?" can be asked. Where there

is already a group involved this is less of an issue, but a one-

man-band should definitely get the rough edges rounded and

cracks filled in before bringing it to the attention of the World

and his wife. There is the difficulty of finding people who are

detached enough to be objective while having the necessary

technical background to perform the delicate task of reining in

and re-directing rampant enthusiasm. (My favourite model is

where a student asks their professor for guidance but I can't see

how that would work for most people here.)

Publication
The next stage is publication. In a non-Internet world this would

mean passing the editorial review panel of 'Manifesto monthly'

then appearing in print. Of course this would now be

anachronistic but the need to publish in a suitable place and the

need to maintain some minimum editorial standards remains.

For example it would need to be clear to a reader what the

working methods and rewards would be so that they are not

lured into contributing to a project under false pretences.

An obvious place to start is a SlashDot-ish forum where

manifestos can be listed, categorised, perused, criticised and,

with any luck, interest potential collaborators.

Typically there might be disinterested suggestions such as for

example "Have you seen such and such" and "that would be

really great if it interfaced with ...". OK that's good food for

thought and might lead to a revision or even withdrawal of the

manifesto. Hopefully there will be potential users, technically

knowledgeable people who show an interest in supporting in a

small way from the edges. Naturally the big prizes are

developers willing to join in with the various labouring jobs. (As

we'll see that's not just programming.)

Limbo...
At this stage the project should be beginning to gain momentum

but there will still be uncertainties and changes. The potential

team members have yet to fully commit themselves and the

scope and development plan of the project are being revisited as

Page 4 of 16

fresh ideas, experience and competence gather round. At some

stage this pussyfooting has to stop and the 'Brothers sign the

pledge'. This is made more difficult if bonding has to happen

using only the Internet.

...to starting gate
At what stage does a suggested plan become a live project?

Good question. Possibly by decree! Presumably some conditions

have been met which in the view of the promoters and putative

participants makes a full scale effort a viable proposition. The

minimum list of criteria should be:

• All failure factors have been addressed.9 For example all

technologies to be used are sufficiently well understood and

essential resources are available.

• As a result it has been ascertained that the project is

feasible.

• The team has adequate skills, cooperation, flexibility and

willingness to try.

• The objectives are comprehensively described and clearly

set out

• The methods (eg development process, management

structure, milestones) are agreed.

• Management is on a realistic footing.

This sounds like a tall order, and of course many people prefer to

press on regardless considering this sort of thing to be only for

suits. There is a practical way to achieve these goals:

Shake-down
Have a mini-project with the aim of proving feasibility, getting

people familiar with development methods, each other and

exploring the trickier aspects of the project in prototype form. All

this work will pay off later, and of course prototype materials can

be re-used, or used to show definitively (that is for discussions

based on fact rather than hunch) why 'easy' method A won't cut

the mustard and 'tricky' method B will have to be used.

I'm a great believer in prototyping - provided the reasons for
doing it are understood and the line between lash-up and

production is clearly understood. Amongst other things a

prototype teaches you what you need to know about the system

design (top-down approach) and the nitty-gritty technology

(bottom-up approach). These don't need to be joined up very

well in the middle or packaged very well on the outside. Now

you have a much clearer idea of the best way to create a system
for real and how long it will take. Suppose for example that your

project involves something that might consume a lot of resources

or take a lot of time - but nobody really knows how much and

whether it will be a problem in practice, and if so what might

need to be done to mitigate the negative effects or use a different

approach. Build a prototype of the unit, put it on a test rig and

do some experiments. Far better to find out before serious

construction work starts than deliver a turkey or delay the main

project by swapping-out an important engine.

The shake-down is just a bit of muscle flexing. Some of it may

have been done before as the original promoters might have

produced a proof-of-concept or something else to use as a

template. Even in these circumstances it is worthwhile having

some pre-development activity if only to 'get all the pieces on the

board'.

3 Developing quality software -

Volunteer companies

Development process
Phew! All that but still nothing much to show for it. Actually of

course there are three important things:

1 An agreed plan :

• In a collaborative environment members have to

'sign-up' to the plan, you can't demand they work on

Foo or else they won't get paid.

• The order in which the parts will be made, what

they have to fit in with and why they're important is

clear to everyone.

2 A team environment :

• This takes time to develop when a bunch of

strangers come together

• Remote communications are more tricky as they

lack the social 'glue' that comes from face-to-face

meetings.

• A form of management. Mad inventors may not

make the best leaders! The job of getting anything

from a bunch of egotistical and dogmatic

programmers spread around the globe is like

herding cats! Lack of experience might tend to lead

to the 'muddling through' style of project

management - a fine, low overhead, system

provided failure factors are ruthlessly sought out
and squashed.

3 A development method

• Common or compatible tools

• Common standards

• Shared understanding of process

• Shared understanding of roles

(More about this below)

These things are much more significant in a free-range

collaborative project as the team and it's methods of work are

being built from scratch. In a traditional commercial

environment the framework of standards, tools, management

hierarchy will be, or should be, already in place.

Roles
Of course there are a variety of jobs necessary to the production

of quality software. The length of following table might come as

a surprise, it did to me, and it isn't complete. There are plenty of

people who are able to wear all these hats while some are good

at or temperamentally suited to, or only have the time for, just

one. Note : This is not a one role per person listing.

Analyst/Resea

rcher

Investigator. Looking at requirements and

searching for available resources.

Artist Graphic technician and design.

Assembler Technician in charge of build process

Asset

manager

Administrator for all assets including

keeping records of ownership and licencing.

Might include human resources.

Contributions

administrator

Monitoring and recording team

contributions. Including checking

compliance with standards, quality,

reliability etc.

Designer There are various flavours of designer. The

common element is being able to see how

to deliver a result using the available

technology.

9
Failure factor : Something that could scupper the project and
need to see coming in order to take avoiding action.

Page 5 of 16

Exerciser Harness-maker who makes sure the product

and components deliver what they're

supposed to.

Finance

administration

Person with a certain mentality; able to

follow through accounting chores,

demonstrate transparency and keep

meticulous records.

Gaffer Hardware/networking infrastructure

support.

Lawyer Technician, researcher and possibly

negotiator.

Leader A good communicator with good

understanding of 'what matters' and

attention to detail.

Librarian File administration and retrieval technician.

Packager A person who creates a finished product

and is responsible for its reliable delivery

and installation.

Programmer

(High level)

A coder who is good at or temperamentally

suited to top-down programming.

Scheming what the main bits are and how

they interact.

Programmer

(Low level)

A coder who is good at, or temperamentally

suited to bottom-up programming.

Typically with specialist knowledge of the

technical realms covered by the project.

Promoter/

Publisher

An irrepressible enthusiast able to get

across why people should be interested in

making, testing, buying or trying the

product. Knowledge of the market structure

and conditions is very useful.

Prototyper A skilled developer who can hack together

something that 'works on the bench'.

Technical

author

A writer able to communicate specific ideas

and skills to specific audiences with the

technical prowess to use any appropriate

media.

Tester A devious cove who investigates robustness

and susceptibility to failure. This will

include 'peripheral' aspects such as user

documentation.

User contact An ambassador and conduit between the

technical team and users. They might

arrange user trials and publish potted

feedback to the developers.

Visionary Original creator of the manifesto

Some shopping list! Manifesto writers need to have some idea of

which will be the critical roles in the way they envisage the

development. Some projects might need a horde of programmers

while others share most of the tasks between team members

with a recurring agenda item. Almost inevitably there will be

overlaps and joint efforts as team members put in their two-

pennyworth. (Regarding this last matter, 'advice' could be

anything from interference to mentoring.)

Some people have a natural knack. These are difficult to

discover, particularly without face to face meetings. If you find

such a talent then make a role for it. They may be good at

cadging resources or seeing through confusion and spotting the

key issue when others are milling around, or simply proof-

reading. (If you think you have found a useful talent then
nurture and cosset it. You might be able to get another

Technical Author 'off the shelf' but where can you get someone

who produces beautifully illustrated quick-start guides which

demand attention?)

Free-range collaboration can be a good opportunity to learn what

happens 'on the other side of the fence', and learn new things,

and try new methods because of the less formal demarcation and

greater emphasis on team effort than might be found in a

traditional software factory ...

... But it carries the risk of having an entrenched and useless

person occupying an important role. (All roles are important.)

Being able to test a CV out before 'employing' them is not

possible - but it is practical to ask for a brief background and use

the shake-down to discover their weaknesses.

Development sequence
Here is my standard development template. The numbers

indicate definite stages. (More in appendix C) (Dots fors5 and 7

indicate lots happening at once or order isn't important within

section.)

1 Appreciate the task. Get a gut-feel for (a) What (b) How (c)

Amount of work

2 Top-down design (Evolving from "what will it do")

3 Bottom up design (Evolving "how will it work")

4 Proof of concept and prototyping

• Plan production

• Finalise design and review estimates of amount of work

• Check with users and confirm 'market'

6 Finalise development environment

• Write user documentation

• Write code. NB Possibly in stages.

• Get code to work (Exercise)

• Check code works (Test)

8 Build finished package of deliverables

9 Consolidate development documentation and review

There is more to the software life cycle after it goes out of the

door, but for now let's simply call that 'post-delivery support' and

forget about it. (There's a good reason for this split. During

development developers are working to satisfy their own goals,

but when users start complaining they have to submit to

somebody else's demands. This can be a big strain especially

where high performance head-down programmers are

concerned.)

Notice that stages 1 to 6 these are 'training for the real thing'. As

discussed above this is ideally suited to the shake-down phase.

This isn't to say that the design stages are merely play-acting -

In fact stages 1,2 and 3 are an opportunity for team discussions

that serve the purpose of educating the team members and

allowing them to get to know each other. If you like 1,2 and 3

are 'meetings round a drawing board'.

Stages 4, 5 and 6 have a different character. Let's describe it as

"Each person to prepare for their role as leader in their

specialisation with relevant bits warmed-up and ready".

Stage 7 is head-down development. In a collaborative project

there needs to be some central management of this process. In a

Volunteer Company there needs to be communication between

coders and the rest of the team throughout in order that the

'peripheral' stage-8ers can get on with their jobs with the least

practical time lag.

Page 6 of 16

Stage 9 is an audit for three purposes:

• clarifying what lessons have been learnt, what mistakes

were made, what worked, what didn't, who shone and who

stuttered

• making sure the internal administration and project

documentation is correct.

• considering "where do we go from here". (Including the

support that we conveniently forgot about earlier.)

Obviously this is a gross simplification of a real-life development

but from simplification comes

• Understanding and

• Control.

Management blues
For what it's worth I used to believe that leaders were born and I

wasn't born to be a leader. I was wrong.10 The reason people

find it difficult is the same reason they'd find it difficult to ride a

horse without saddle and reins. A management method of some

sort is required before the force of the horse can be harnessed.

(And of course a lesson or two and some practice.)

• A leader holds the reins

• A management system is used as a harness

The harness for a horse does two things:

• Sends controls to the head

• Takes the pulling force from the animal to the cart

A leader should understand and adjust how the whole
horse/harness/cart system works but on the road only uses the

reins to give instructions to the horse's head and lets the horse
do the rest. A badly trained horse or poorly adjusted harness will
be a nightmare.

Is it surprising that most of the 'doers' would rather be getting on

with useful work than wasting time in meetings and writing

documentation that nobody will ever read? The ennui of

committees, trying to explain to the dim-and-entrenched and

being so much more knowledgeable than the others but only

having one voice in a 'democracy' is enough to put off anybody.

This circle must be squared! Volunteer Companies need

management - management by the people with the most 'fizz'.

Management model
For a start let's assume that the 'management' is a bit vague

about what it should be doing. That's easy: Provide some

templates and checklists that require answers, structured

analysis and a sound basis for team discussions. That's what

this article is all about.

Now how about command and control? Plenty of options from

"It's my party, I'm the boss, accept it or leave" to "join the

everyone's equal coder's commune, we can't wait for your

opinions". Umm... Something more in the middle, something

that recognises the value of contributions and the value of letting

people get on with their personal micro-missions without

interference will probably be more suitable to a Volunteer

Company.

Of particular importance to the Volunteer Company is

distinguishing between the team building, project definition

stage and the noses-to-the-grindstone stage. In an organisation

that evolves over a longer period these phases are less distinct

and have a traditional leader-committee-followers structure that

may have evolved over years together with objectives and

methods that are already in place. In essence a VC must stick a

'build the team' task in front of it's other plans.

Trierarchy
Something that I've noticed is that a group of three works better

than one of two or four. In appendix D I've described a possible

organisational structure that uses this concept. In short,

members work in groups of three with one link 'up' and two

'down' although 'up' and 'down' are not necessarily absolute. The

purpose of this is to optimise the setting and delivery of goals
during the production phase of a project, freeing members to be
clear what part they have to play and get on with it. This is not
suitable for early days sorting out in the team building phase

where larger forum scope is required in order for members to

weigh up the wider picture.

Management conclusion
It should now be abundantly clear that Volunteer Companies

will have a distinctive lifecycle:

Seed Manifesto

Shoot All energy goes into growing strong quickly

Plant Effort now goes into fruit-bearing

The management of each stage is different:

Seed Proselytiser on a soap box

Shoot Mêlée that sorts itself out by technical roles and

into...

Plant ... an organisation tuned for creating and

assembling components

The two objectives of the shake-down should now be clear : To

clarify the technical objectives and to establish a working

organisation.

There may be other ways of arriving at the 'Plant' stage without

going through a shake-down but the objectives remain just as

important.

As we'll see in the next section, there is no need for the plant to

die after a single flowering. It is a much more efficient and

effective process if a VC doesn't need to go through the team

building stages all over again. "That was fun - Let's do another"

By the way, notice that this is nothing to do with open source or

working for no pay. This is about making efficient use of talent

to deliver quality software.

10
I've now graduated to leading from behind, by example and
subversion. Programmers ought to make good leaders : They
can see how to make things work, they can draw up and follow
a plan, they can see through walls, they work towards clear
objectives, they are always asking "What could possibly go
wrong" and are basically optimistic. OK some lack the
necessary social skills - but even then, being technically
superior in a technical environment goes a long way.

Page 7 of 16

4 A model for financial and

technical development

Making a living
Which is more 'valuable' : Firefox or Nelson's column; Sendmail or

the Mona Lisa; Shields Up11 or a free concert in the park?

The value to society of 'art' is already established. There are

grants, scholarships, bequests, festivals, and sponsorship. Then

there is a large commercial arm of the arts from mega-

corporations to writers and buskers. I believe that a similar

approach to the 'programming arts' would be extremely

beneficial.

Firstly it would remove the necessity "to be commercial". There

are probably thousands of unpublished novels that are far better

than the branded pot-boilers and hundreds of biographies that

are far more interesting than 'auto' biographies of celebrities.

The same applies in software: "What we want is something to

steal another's market not make our own." not to mention the

infamous "I think there is a world market for maybe five

computers."12 (Now if I was handing out money I'd want some
expectation of quality - hence the previous sections.)

Secondly, the people who are intimately involved with

technology are often the ones who can see how it can be

improved. Also they're probably the ones who are best qualified

to make the changes. Supporting these innovators helps build a

culture of continuous improvement and challenge. It is

interesting to note the technological developments in the spam

wars. Currently there is more spam traffic than there was total

traffic a couple of years ago13 and everyone pays for it. So far

society hasn't been very forthcoming in giving proper support

and nourishment to the good guys.

Thirdly, unless there is a thriving and competent source of

variety there can be an awful stagnation and entrenchment and

exploitation through monopoly.

• PGP was a classic example of how 'official' restrictions 'for

our own good' can be challenged.

• Independent developers can reduce dangerous dependence

on mono-cultures. Linux and Open office for example.

• Ogg is an example of an independent development that

avoids a potential patent stranglehold on streaming formats.

• Whilst some might say that having two main graphic

desktop systems for *nix (Gnome and KDE) introduces

unnecessary confusion, most people agree that the

competition is a good stimulus to further development and

choice is a good thing anyway.

Fourthly, this can be a very low cost operation giving very good

value for money.

• Highly skilled and knowledgeable people contributing very

effectively

• There are potentially many more testers and proto-users

available to guide progress from the 'Can we get it to work'

stage to the 'It works' stage to the 'This is really good' stage.

Developments that work on fixed budgets and timescales

can't go through these iterations.

• Ab-initio developments can establish standards that people

actually use without having to engage in patent-wars,

royalties and proprietary stitch-ups.

Fifthly, amateur, low-budget, projects can be a good training

ground for developing developers. In depth technical

knowledge, skills and practice working in a disciplined team are

very valuable assets and continually need replacing. Any society

that expects to thrive without bright and experienced software

developers is kidding itself. Traditionally this function might be

done by universities and research institutions - Long may they

continue to do so, but there are plenty of specialists who for one

reason or another will never visit such an institution. (It would

be nice if they could reach-out to non-students and non-

researchers.)

Sixthly, if a lot of software (or content) is 'already paid for' it

means more users can access it. This is the ethos of public

service broadcasting and equal opportunities.

Seventhly, governments and large organisations have been

sponsoring targeted software development, experimental

research and training for a long time already. So this isn't a

shockingly new idea anyway. The principle of supporting

software development and standards is already established and

the value is understood. What has yet to be recognised is that

there's a new paradigm emerging with plenty of potential (and a
few existing notable examples) to out-perform the traditional

methods.

All the world's a stage
What if collaborative developers were theatre companies?

Individual 'donation-ware' developers might be equivalent to

buskers and poets. The large software companies might be

equivalent to the film studios and music corporations. There's

plenty of meat on this bone - some interesting similarities - and

differences in 'how the business works'.

Scale and variety
How much like an amateur dramatic company is a volunteer

software collaboration? Possibly quite a lot. The amount of

effort by individuals might be broadly similar; the writer (in the

software analog the manifesto author) may not be involved; there

is an element of direction - that is getting the best out of the

participants to produce a particular vision; there is an element of

production - that is organising the nuts and bolts and selling the

seats; results can be very variable - often superb and well worth

the ticket; there is the element of casting and needing certain

technical skills; and there is a clear understanding that although

the whole thing is being done as a team, in the first instance

members are responsible for their clearly defined role or job. If

amateur dramatics can be such fun then perhaps the same

pleasure from camaraderie can be developed by a good software

group president.

As well as the amateur companies there are small professional

companies that tour and build up loyal followings. Often these

survive by grants, guarantees on the income side and an

infrastructure of goodwill and part-time employment for trusted,

versatile technicians on the expenditure side.

Large permanent professional companies usually rely on

substantial state funding. One of the justifications for this

funding is the need to have really top class work across the

board. As identified above, universities and research

organisations might be the equivalent software analogue.

11
A free on-line security test from Gibson Research Corp.
www.grc.com

12
Thomas Watson, chairman of IBM in 1943. Another classic :
"This 'telephone' has too many shortcomings to be seriously
considered as a means of communication." Western Union
internal memo, 1876.

13
By a back of the envelope calculation.

Page 8 of 16

Single-show major productions are on a different footing. They

start with a 'script' which is developed into a production plan

with stars pencilled-in which gives a sum of money that needs to

be raised from private backers in order to proceed. If lots of

tickets get purchased then the backers profit, if not they loose.

This model has been the traditional one in the software industry.

Perhaps it is only suited to the larger, more complex productions.

What can we learn?
As Shakespear's famous "All the world's a stage" soliloquy

suggests we compare life to a play so let us now reflect on how

true or insightful comparing software development to theatrical

production really is.

Large productions rely on large financing and ticket sales.

Selling tickets is of course analogous to selling licences. Ticket

sales mean promotion and a 'finished product' that can be passed

through a distribution chain according to an established

financial model.14

The many thousands of amateur companies only look to recoup

their costs. Interestingly they charge a range of up-front ticket
prices and don't use the 'if you've enjoyed this then put some

coins in the box' method. Suppose you've found some really good

software - how much should you donate? Nobody knows. There

isn't an 'about right' socially acceptable figure. Not a lot of sleep

is lost ignoring shareware authors - we all like something for

nothing. There is no framework, no box office and nobody to

check your tickets. So are we stuck with software that's "worth

every penny"? One model which has been used is to give away

the software but sell the bits that go with it, productivity tools

and support. This is like having a free cabaret but being over-

charged for drinks.

Reviews play an important part in developing theatrical and

literary careers. Software reviews (where they exist) look at

comparative features not the value of the key contributors. "Vera

Smith's cumbersome UI is rescued by the superlative help

system we've come to expect from Jim Scoggins". They tend to

look at early versions which is equivalent to reviewing a

rehearsal. In the performing arts there are freelance performers,

permanent technicians and commissioned writers and

specialists. The same thing could exist in software if only you

knew who were at the top of their profession, had a track record,

and were available locally at a reasonable fee.15

In the performing world there is commentary and news about

who's doing what by people who know the business. Journalists

are tasked with being spotters of trends and flaws on behalf of

the 'man at the console', are useful conduits for information, and

can apply pressure to otherwise unapproachable organisations to

be 'user friendly'. This world-of-hype works. It creates and

maintain an interest in the film and theatre industry. From the

manifesto to the release of my next bytebuster "Indoor Hanglider

III" it's good for people to know I'm looking for talent when

recruiting, and to become excited by 'inside' progress reports,

and scan the reviews when it gets released. If I can't be

bothered to do a little bit of public relations work then why

should anyone else be bothered about it? The average person

needs some filtering and sorting to be able to access what

matters to them. Just one example might be a review of new

manifestos, roughly equivalent to book reviews. Obviously this

requires a reviewing infrastructure.

Some outfits such as folk, musical and dance troupes get paid to

perform at festivals. The festivals are typically civic subsidised

cultural events. The software equivalent might be an annual

delivery of projects at a particular trade show or government

sponsorship for groups that adapt foreign-language programs for

local use. In this last case it shouldn't be too difficult for a

government to see the value of maintaining a skill-base capable

of doing this work. Note that these involve semi-permanent

groups with particular specialisations.

With large one-off productions such as films a company is

collected specially to do the job. Is this the best way to organise

small software development projects? Probably not, it seems

silly to have to go to all the trouble of building up a team then let

all that effort get dispersed at the end of the project. Smaller

theatrical productions tend to be the preserve of small

permanent companies who tour and adapt or hire extra bits as

required. Software development could use this model.

"Following on from this year's yacht design workbench, next

year's production will be a boat owner's toolkit".

14
Interestingly even with large software productions we are
seeing a shift from the 'movie model' (finish and move on to
something different) to the 'serial model' with service packs,
and security updates.

15
We'll know when the world accepts developing software is
'cool' when there's a programmer's Louella Parsons.

Page 9 of 16

5 Conclusion

Note : 'Software development' is used here as shorthand for

'Information technology development'. For example this could

cover standards, robotics, training materials and hardware

packages. Participants need not be individuals, for example

there are plenty of examples of standards and technical working

groups staffed by big corporations.

The need for more collaboration
We've seen how the current collaborative groups tend to be

(though once again I take my hat off to the few that shine) too

amateurish in getting to grips with the establishment of a viable

group and covering all the bases required for quality software.

One-man-bands proliferate because of the effort required to

recruit, indoctrinate and manage contributors.

Skills and in-depth technical knowledge need nurturing. A

useful environment for this is as part of an 'amateur' group where

people can develop their techniques and broaden their

experience. The Amateur dramatic analogue shows us that this

can be done for fun as a hobby with surprisingly good results.

Increasing the available man-hours by collaboration means

larger projects can be successfully completed. Increasing the

available skills through collaboration means all aspects of the

project can be produced to a good quality standard.

The possibility of being paid
Earning a living depends on being able to obtain real money

from somewhere. This will remain a difficult and irritating

necessity but it will be impossible unless results of good quality
are produced. The more professionals that can be employed the

more everyone will raise their game.

"Volunteer" in VC doesn't necessarily mean 'unpaid', but in the

nature of things, regular pay-checks might be unlikely. Co-ops

exist around the world in many fields which might provide

suitable models. The VC 'commune' model could evolve into the

VC 'corporation' model where commercial exploitation is the

primary objective.

It is possible to visualise situations where specific units of work

created by a contributor are re-sold. In this case the VC might

(for example) give 50% of the profit to the contributor, with a

sliding scale for how much team-effort has gone into wrapping

the work up to commercial standard.

The efficient system
It seems silly to go to the effort of creating a viable and effective

software development team just for a single project. A better

method might be the Volunteer Company which sets out to do

work in a certain field rather than produce a specific product.

For example 'VC-New paradigm email' might work on modules

used to build clients, authorisation for organisations, simple

digital signatures and many other practical steps in the evolution

of email. At some stage it might be able to sell-off some of it's

intellectual property and for incorporation into 3rd party products.

One of the reasons it would be able to do this is that it would

have a number of people in the project tasked with

communicating with other interested parties.

The independent Jack-of-all-trades ethos may work for micro-

projects but successful authors concentrate on writing while

publishers do the production and promotion work. Each does

what they're good at. If the creation of software ideas is not

intimately tied to the production process this provides some

useful flexibility.

• Manifestos become free-standing and possibly commodities

in their own right. A bit like plays and film scripts.

• Development teams are free to choose which ones they think

are viable, worthwhile, suited to their field or technical

abilities.

This can lead to authors being commissioned, technologists

being hired to troubleshoot and designers being asked to submit

designs. All-in-all a much more fluid system for getting the right

skills used for the right thing.

Epilogue
So that's the vision. A framework for setting up collaborative

software development efforts in order to boost quality, and a

framework based on the performing arts model for nurturing

talent, giving simple pleasure to many, offering paid employment

and performing a useful civic service.

I have provided some checklists in the appendices to assist

people who want to have a go at writing manifestos and

organising VCs. I would suggest that these would be useful to

anyone contemplating a project, even if it is only a 'couple of

man-days'. These are an attempt to remove the 'Continually

evolving mission', 'group management is too scary' and 'factoring-

in quality sounds tedious, difficult and basically unnecessary in

this case' barriers to quality team efforts.

Pre-publishing review and publishing of Manifestos requires

some Internet and technical infrastructure. This will have to

evolve. My suggestion if for there to be a 'Manifestival' every

three months, perhaps each with a different sponsor and flavour,

at which manifestos are on public display for a few days. This

generates a 'market' atmosphere where all interested parties

know where to be to see what's on offer and who is interested.

The VC model can succeed without financial support, but civic-

minded bodies should soon be experimenting with sponsorship,

training and using them as a socially beneficial resource. This

will necessarily be tentative at first until VCs show what they are

capable of.

In order for VCs to inspire confidence in their usefulness there

will need to be some infrastructure for evaluating the quality and

spin-off value of previous projects. This is important but at the

moment it is too early to say what forms this might take.

What to do now
1 Establish a Manifesto/VC net meeting place

2 Encourage the publishing of some manifestos and discuss

the IP issues.

3 Encourage the formation of some technical area specific

VCs (as opposed to project-specific ones)

4 Seek donors and create a distribution method to dangle

carrots or otherwise encourage VCs or commission

manifestos.

5 Polish and expand on the practicalities and benefits for all

concerned, including promoting this as extremely good

value for money for large funders who are concerned to

develop skills and locally useful results.

As I don't work for a wealthy foundation and don't know any,
these matters are now handed over to the reader.

Page 10 of 16

6 Appendices
A Manifestos

B Example manifesto

C Tips for timid team leaders

D Trierarchy

Appendix A

Manifestos
1 Purpose

2 Components

3 Simple assessment criteria

1

A manifesto is a statement of vision sufficient to attract potential

collaborators. It describes what it is intended to produce and the

value of doing it. Then some thoughts on the mechanics of

production; including what work can be re-used as a start point,

what special skills or knowledge would be useful and any pitfalls

or possible bonuses.

This is then published in a suitable place where potential

collaborators or developers can assess it from their own

perspective, suggest alterations and indicate an interest.

Converting a manifesto into a complete project plan including

the scheme of collaboration being used is a job for the production

team in conjunction with the manifesto author. To make this

simple the author should indicate the sort of licencing scheme

they prefer.

2

There are three basic parts to a Manifesto:

• What it is proposed should be done.

• Reasons why the a project like this is worthwhile (Including

need, opportunity, or simply new exploration.)

• How the project might be implemented (Including

organisation and technology)

The level of detail will vary according to the size of the project

and anticipated technical difficulties. It is possible to visualise a

manifesto as compact as:16

Task : Translate the UI of program Foo written for Bar
speakers into language Buz using native units.

There are 12 screens, 40 database fields, 50 help
screens, a manual and 3 main routines involving
scientific calculation.

Also : New work : Produce a cardboard ready-reckoner.
Why :Our farmers waste an estimated $4,000,000 each year

on mis-applied fertiliser.
How :1 - Check scientific basis is applicable for our

climate/soils.
2 - Persuade original author to let VC generically
internationalize program
3 - Use Bar-Buz translators (National Agric. Inst.?) to
change texts
4 - Validate texts in the field
5 - Validate changed calculations

Notes• It might be possible to create the ready reckoner in
time for the upcoming season. (This might be a good
shake-down task.)
• Informally, the original owner will 'free' the software
on the understanding that the internationalizable
version will also be 'free'.

This lists 'What' and 'How', or if you like Objectives and Methods.

Notice that while the manifesto author is fairly clued-up about

the 'How' their analysis is at a high level and doesn't, for

example, specify how many man-hours or go into the complete

skills roster. These matters will be developed by the people who

are actually going to do the work who might be expected to have

a better grasp of their resources and practicalities of managing

them. Obviously this is hardly enough to build a proper project

plan on and there will need to be much more detail, discussion

and fact-finding when the VC has agreed that this is a project it

would like to get involved with in principle.

Notice that the author has clearly indicated the multi-

disciplinary nature of this project. In a sense all projects will

require a bunch of different skills, but this one in particular has

quite a large non-computing specialist level.

In this example we don't know anything about the author they

might be the student who developed the program as part of a

university course and now sees wider potential in another

country, or a government official looking for the right skills for a

properly funded project, or a software developer desperate for

assistance from the Real World.

The How details are in the 'to be determined' section
a Exact scope (Perhaps in stages and/or modules)

b Proving the validity of the concept and availability of skills.

At the same time the implementation plan will be being firmed-
up

a What (software) development model to use.

b What intellectual property/licence to use

c What technologies will be exploited...

d ...And developed or applied in novel ways

In the example the author has hinted at the last three but may

not be able to specify in any more detail. The experts in the VC

may have their proven software development procedures so this

aspect might be best left to them.

The third part that requires more detail is an exploitation plan
a What will be delivered

b How it will extend or replace existing applications...

c ...or open new fields of application of computerisation

and management issues

d Success factors

e Failure factors

f Resource investment requirements

g Probable rewards

Our example author has sketched these out but not gone into

any detail. Though they've talked about translation and the need

to check the technical translation 'works in the field' they haven't

explicitly said that "This project is a non-starter if we can't do the

technical translations." If they had done so then they might have

concluded "With potential savings of say $1,000,000 to the nation

in the first year, getting this project completed and released

before the end of the next rainy season should be a priority - The

tight timescale suggests professional talent should be made

available as a matter of urgency."

If we were reviewing this example manifesto we'd have some

things to say about lack of detail in this section. For example all

we know for sure is there will be a cardboard ready reckoner. No

idea what form the software will take, how many copies, what

the distribution channel will be and so on. Most of these details

should be specified up-front by the manifesto author.

16
At the other extreme is a 76 page design I wrote for a National
Pothole reporting system.

Page 11 of 16

3

Simple assessment criteria as a checklist for authors to avoid this

last problem and for reviewers to categorise their opinions form a

framework for self-evaluation and peer-evaluation. Here is a

suggested list:

a Does the document conform to the basic Manifesto structure

as described above?17

b Is the 'What the project should achieve' section well written

so that a reader can grasp the essential concepts and overall

structure?

c Does this demonstrate a good grasp of the current state of

the art?

d Does the 'Why the project is worthwhile' section explain

clearly the benefits?

e In the opinion of the reviewer, are these benefits really as

valuable as suggested?

f Has the author suggested a reasonable 'How to go about

this project'? Too vague or too prescriptive? Too ambitious

or too narrow-minded?

g Has the author made a reasonable stab at an

implementation plan or indicated what the issues and

unknowns are?

h For each of a-g in the exploitation plan is there enough

detail and realism? Are there items that have been left out?

A shorthand scheme might be

• Ambition Already been done ... through to

... far too much to expect.

• Tech. difficulty Practical and realistic?

Too optimistic or easy?

• Usefulness Benefits likely to be seen in practice or just

hype.

• Clarity of participation model

There may be constraints at the manifesto

stage on the way the software is to be

developed, released and exploited.

Eventually these become more significant

for individuals deciding whether to

participate in a VC.

• How well are success/failure factors identified

Appendix B

Example manifesto

Project name : AX

Author : Peter Fox

peter=inventor@PeterFox.ukfsn.org

Date : 27th December 2006

Status : First release.18

Result : A simple method of obtaining accents or unusual

characters from a plain QWERTY keyboard.

Job to do : Reimplement a proven but very old home-grown

utility for as many alternative operating systems as

people see fit.

Basic idea : Repeatedly pressing a key cycles through alternative

characters. In simple terms:

Press e Result : e

Press e again Result : backspace é

Press e again Result : backspace ê

Press e again Result : backspace è

Press e again Result : backspace e (ie cycled back

to unadorned character)

The cycles of alternative characters is user-programmable and

not limited to multi-lingual characters, so for example c-©-c or $-

£-i-$. In practice this works very smoothly and quickly as say

'cc' soon becomes automatic for somebody who uses the

copyright symbol quite a bit. There is no hunting for keys or

trying to remember which shift is required. And if you go 'too far'

or need the unornamented character you can just cycle to the

beginning. This also works if for example you wanted to later
change é to è.

Benefits : This is a very simple system for people to use whether

for occasional special characters or frequent use in accented

languages. In particular, a plain keyboard can be enabled in

whatever way the user wants.

Original implementation : The original implementation used a

macro-key recording feature available in Windows 3 (I told you it

was old!) that trapped target key presses and passed them to a

Visual Basic routine for replacement by backspace then 'next

character'. The 'current' character was determined by examining

the character to the left of the cursor and cutting it into the

clipboard. So in fact it is not really a 'two presses of key' method

but a 'can we modify the last character on the screen' system. It

worked!

New implementation : Whilst the original implementation proved

the utility of the concept; it was crude, relied on obscure

Windows features and clobbered the clipboard. My guess is that

it will be difficult to implement a one-program-fits-all-OS

because of the low-level operations involved, however it should

be possible to provide a high-level specification, standard UI and

standard configuration format to allow country-specific files to be

preset and distributed regardless of OS.

Developer skills required :

• Bottom-up, OS-specific programming for what should be

standard calls to keyboard and screen.

• General design and coding for UI and configuration file

format

• Multi-lingual documentation

17
And one presumes, some formalities related to indexing and
key word searching as developed in any manifesto cataloguing
scheme.

18
September 2008 update: One day, in an attempt to avoid real
work, I implemented this for Windows and is now available free.

Page 12 of 16

• NB The manifesto author will NOT be providing project

management.

Constraints :

• Idea : Released to the public domain.

• Source code of original implementation : VB program files

(very old version) and user documentation in Windows help

format available free from Peter Fox.

• Name : Copyright Peter Fox (Available free to any viable

project team.)

Implementation plan :

(a) Software development model

1 Briefing of principles : Nothing difficult

2 Prototypes for each operating system

3 Standardised design specification and UI agreed

4 Production quality coding and user documentation

5 Packaged for stand-alone release

6 Offered to o/s providers

(b) Intellectual property/licence to use

As developers see fit. (There is no reason inherent reason

this shouldn't be a closed source project.)19

(c) Technology base

• This relies almost entirely on (presumably

documented) operating system calls.

• There could be issues with character encoding

systems that are not one byte=one character

(d) Technology development

The principle of what to do when combinations of character

to the left of the cursor and certain key press occurs might

be extensible. For example an underscore after a full stop

might command applying a style to the whole preceding

sentence or decimal aligning a number. Whilst 'certain

special actions only work in special circumstances' might be

confusing for the novice and irrelevant for people who don't

do 'that sort of thing', magic keys, especially where there

might be a dearth of keys such as a mobile phone, might be

really handy short-cuts for the type of person that likes to

make use of them.

Exploitation plan :

(a) Deliverables

• Single (open) standard for storing configuration data

• Stand alone 'this will tweak your o/s to do the

necessary trapping of events' utility. One per

operating system (or o/s variant if required). With user

documentation etc.

• Developer-level documentation to allow 3rd parties to

internationalise the UI without any further

involvement by the original developers.

• 'Internal' documentation (could be closed even if

generic program is not charged for) describing how the

technology might be incorporated into specialist

applications.

(b) It is believed that this is a completely new approach to

providing accents and symbols. By gluing it to the operating

system this makes it available to all applications.

(c) -

(d) Success will depend on

• Good design : Simple UI, ease of use and configuration

• Good grasp of details of o/s calls (including variants

and wrinkles)

(e) Failure could arise from

• Complexities of o/s causing some operations to fail in

the field. (Prompt for good test plan.)

• Difficulties with multi-byte encoding

• Lack of globally available o/s calls for keyboard event

trapping and cut-and-paste.

• Applications that refuse to let the o/s get hold of

necessary key presses

(f) The development resources required would be quite limited

but specific.

• Good designer who understands the importance of

use and create a simple architecture that makes

internationalisation simple.

• 'Expert' programmer who are familiar with system-

level o/s calls...

• ... one per o/s should be enough (This is not a large

job)

• Experienced packager who can create o/s (and

variant) specific versions in a simple or automated

installation method. (Features may need to be

switched on/off according to o/s variant and specific

other applications being used.)

• Test manager with access to a wide selection of o/s

and variants either directly or via a network of tame

testers.

Note : The software would presumably be developed using

a portable system-level c-ish language. It makes sense for

this to be standardised across the whole project.

(g) For the general public it may be too difficult to charge for

the finished generic program and make a profit worth

bothering about. (See also the notes below.)

• It may be possible to sell finished programs to large

institutions in bulk pre-configured for their specific

purposes.

• It may be possible to sell the proven-in-practice

code to o/s manufacturers so that can build it in

seamlessly to their products.

Notes :

• It might be easy for clones to incorporate parasitic

malware. For this reason it would be a Good Thing if the

end-user generic deliverables were completely free and

easy to adapt for foreign language use.

• Although this has been written as an illustration of a small

Manifesto for the purpose of showing what such a

document might look like, it is 'on offer'...

• ... But until the global Manifesto cataloguing infrastructure

exists it isn't possible to tie this to a discussion and team

recruitment forum.

19
Although the author suggests that making the source available
will act to improve its quality because of the knowledge that it
will be examined by 'hackers' who like working at this level.

Page 13 of 16

Appendix C

Tips for timid team leaders

Organising a collaborative project will strike fear and loathing

into the hearts of many highly qualified, motivated and

competent software developers. Well yes it would do - it's like

finding yourself in a strange country: There's a new language to

learn and different ways of doing things.

Here is a survival guide. The effort is well worth it. Firstly you

achieve a lot more as a team, and secondly you rapidly become

tuned in to what makes teams work both as a leader and what

makes a good cog-in-the-system. Most experts like to do both :

Contribute to policy, coordination and oiling the wheels; and also

to be have a private domain where they can do really useful work

without interference.

How to start building a team

Easy : Be a team builder. A team builder is someone who can
convince others to work together towards one objective. The

team builder has to communicate, that is educate and sell, what

it is they're trying to do together.

1 It would be a great idea if ...

2 Who's up for it?

You won't get anywhere it if you can't explain what you're trying

to achieve.

You must also be clear in your mind what the success and failure

factors are and have a back of the envelope 'what to do - how to

do it' plan. For example if you're planning a skiing party there

are probably serious time constraints on getting essentials

organised. What are the constraints and what are the

essentials? These may need discussion but by having thought

about the key aspects of the project in more depth than the

others you can demonstrate your superiority in the fitness-to-lead

stakes. Also this is good ammunition when you have to head-off

daft or disruptive suggestions or force a decision.

Then for example (in this order)

• Come on Charlie - You'll be ace doing the twiddly-bits

• Come on Beryl - Charlie is doing the tricky bits

• Come on Andrew - The others will be relying on you

• Come on Dawn - You'll see the others in action and pick up

lots of useful stuff

• Come on Eric - A couple of days work and then we can sell

at a big profit

Different members may have different motivations but all are

working towards the same goal. It is your job to find what

'buttons to press' to get them to join. That's the hard bit over
with.

Immediately a candidate is 'sort of' recruited you should give
them some task involving mental planning. Normally you'd ask

them about how they would and the team should go about

something that they might be interested in.

• I'm glad you're here as I'm worried about how we organise

the publicity (and you're person who knows about these

things and can give us advice.)

• It looks like you'll be the best person to look after the money.

It might be worth having a peep at 'Bookkeeping for

beginners'.

• I don't know if you've any ideas where we can find ...

Software developer's role checklist

There's more to developing software than sitting at a console and

writing a program that 'works'. Any serious project will need the

application of all sorts of skills. Whether you're the captain on

the bridge or a stoker in the engine room you ought to be familiar

with the following list in general and how it is put into practice

for your particular project.

There is no one person to one role suggested here. Typically all

projects will use these roles but they might be carried out by one

person or a horde.

Analyst/

Researcher

Investigator. Looking at requirements and

available resources.

Artist Graphic technician and design.

Assembler Technician in charge of build process.

Asset

manager

Administrator for all assets including

keeping records of ownership and licencing.

Might include human resources.

Contributions

administrator

Monitoring and recording team

contributions. Including checking

compliance with standards, quality

reliability etc.

Designer There are various flavours of designer. The

common element is being able to see how

to deliver a result using the available

technology.

Exerciser Harness-maker who makes sure the product

and components deliver what they're

supposed to.

Gaffer Hardware/networking infrastructure

support.

Lawyer Technician, researcher and possibly

negotiator.

Leader A good communicator with good

understanding of 'what matters' and

attention to detail.

Librarian File administration and information retrieval

technician.

Packager A person who creates a finished product

and is responsible for its reliable delivery

and installation.

Finance

administration

Person with a certain mentality; able to

follow through accounting chores,

demonstrate transparency and keep

meticulous records.

Programmer

(High level)

A coder who is good at or temperamentally

suited to top-down programming.

Scheming what the main bits are and how

they interact.

Programmer

(Low level)

A coder who is good at, or temperamentally

suited to bottom-up programming.

Typically with specialist knowledge of the

technical realms covered by the project.

Promoter/

Publisher

An irrepressible enthusiast able to get

across why people should be interested in

buying or trying the product. Knowledge of

the market structure and conditions is very

useful.

Prototyper A skilled developer who can hack together

something that 'works on the bench'.

Technical

author

A writer able to communicate specific ideas

and skills to specific audiences with the

technical prowess to use any appropriate

media.

Page 14 of 16

Tester A devious cove who investigates robustness

and susceptibility to failure. This will

include 'peripheral' aspects such as user

documentation.

User contact An ambassador and conduit between the

technical team and users. They might

arrange user trials and publish potted

feedback to the developers.

Visionary Original creator of the manifesto

Notes

• This is not a definitive list. It will evolve with experience,

specific requirements and luck in finding geniuses in a

particular field.

• The assembler's role is to physically construct deliverables.

This is an internal technical role that supports the rest of the

team. The packager's role is to develop, maintain and

validate the deliverable packages. This is part design, part

user liaison, and obviously needs to specify aspects of

assembly.

• What is an 'asset'? Classically Men-Money-Machinery-

Materials. This probably needs careful thought in each

instance - to deal with IP for example.

• Contributions need to be administered and managed. The
management might involve quality feedback and standards

compliance. This is a job for a mature person who can be

relied on to administer while getting the best out of

contributors.

• The exerciser may build harnesses for internal use, but can

usually, very usefully, combine these with examples,

tutorials and 'test'20 materials for users.

• Programmers are funny creatures who can be superb at

some aspects and miserably incompetent ,or just miserable,

at others. The split I've used between those that work in

bold strokes with a large canvas from the general to the

specific and those that are fanatical about microscopic

details and hidden subtleties may not be the best way to

allocate your available talent. In any event you need to find

out the strengths and preferences of your programmers to be

able to make the most of them.

• The exerciser supports developers trying to get the system to

work. The tester tries to break the system. These are quite

different outlooks although of course both will liaise closely

with the programmers.

Developing competence and confidence

It is only after starting a job that people find out what it's really
all about. When a team starts work members find out about

each other's knowledge, skills, trustworthiness, reliability as

well. One thing is guaranteed - Their standards and methods of

working will not be the same as yours. So you learn to work

together sharing tasks as appropriate. The thing that makes a

good team is that, as well as getting the job done, everyone helps

other team members get better. "Here, let me show you",

"George has written a procedure which checks you're working on

the latest version", "Please use the official bug reporting system"

and "As we've had a rash of easily preventable coding bugs we're

going to hold a visual bug-spotting contest on Tuesday for all

coders to have a go at."

If you're used to being a lone developer then you'll probably think

that spending time 'bringing the others up to your standard' (as

you see it) is a diversion. Well in one sense it is - a useful and

productive one that soon raises everyone's game. You know

when it's working because bright ideas and smart work and

awkward questions are 'coming up from below'. Talent and

competence is always short supply, and the best sort is that

which you've helped to develop yourself.

There are some people, possibly 10%, who are never going to get

the hang of being in a team. Side-line them, kick them out or

find some harmless niche activity. Most however are only in

need of a little guidance:

• When something is risky be ready to catch a problem early

on.

• If things go wrong identify the problem at the source and if

there's a person at the source go through how to deal with

it with them.

• Many people are afraid of taking necessary bold steps

because they don't have confidence. A team leader will

inspire confidence. (Ask yourself what steps someone

could take to make you more confident) Encouragement,
good tools, good briefing, being told how others have

confidence in you, technical and moral support, and

frequent "you're doing well" feedback.

Confidence breeds competence - Build some today!

Teams feed on achievement. When there isn't much to show

remind members of the worth of their individual contributions, or

arrange some extra-curricular activity where people reinforce

their togetherness.

Early days - shake-down.

Teams with simple physical tasks and no technical difficulties or

high level of skill required can become efficient quite quickly - a

couple of hours. But each of the following doubles the difficulty

• Technical ability and skill required

• A wide mix of roles

• Intermittent interaction

• Opaque interaction

• Abstract activity

• Inexperienced management

• Participants who haven't fully 'signed-up' to the team ethos

• Uncertainty about what tasks are (and who they 'belong to')

• People drifting in and out

For a collaborative software effort mediated via the Internet all of

these alarm bells are quite likely going to be ringing at once.

Run-away-and-hide sounds like a smart move!

Practical team building

Fortunately there is an answer.

Step one : Build the team

Step two : Apply the team to the task

We've already looked at team building in the abstract. Here's the

practical. Sports teams have friendly pre-season matches to get

up to speed, fresh military units go on training trips and your

fresh team needs the same experience. (In fact often you're

building the whole system from scratch whereas the sports team
and military unit will have their rules, equipment and systems

provided.)

20
Check to see everything is working after installation etc. Not
thorough testing.

Page 15 of 16

1 Collect the team

2 Make sure everyone knows their primary role

3 Brief for trial run...

... clear but limited overall and specific

objectives

... get up to speed on your bit

... and shout if anything is not working right

4 Confirm everyone is ready and knows what their objectives

are

5 Off you go

6 Make sure people that should be communicating are happy

7 Have a finish point

8 At the end ask for suggestions for improvement ...

... and if possible get a respected outsider to give a review

... and pat on the back.

In software development you might aim for a general proof of

concept or a simple but related project that is a taster for more

serious work to come.

Project planning

There are two main things to bear in mind here:

• An orderly sequence of steps

• Ways of measuring progress

One way to generate a plan of work is to start at a top level (let's

call these phases) and work down in more detail (steps). Each

phase or step will have some objective that can be reviewed. For

example we've just been looking at the shake-down phase where

the objective is to build the competence of the team and its

members so everyone is confident they can do a good job on the

main project. Existing teams may not have a shake-down phase,

instead a familiarisation with project objectives phase which

could last just minutes. One possible sequence is:

1 Recruit. Refine objectives and methodsRecruit. Refine objectives and methodsRecruit. Refine objectives and methodsRecruit. Refine objectives and methods

Objective : All necessary resources vouched for. Members

committed and understand what's being attempted and how

they will play their part.

2 Shake-downShake-downShake-downShake-down

Objective : Raise the general efficiency of the team. Ensure

all members are confident they can do a good job and are

not having problems. Clarify and contain any outstanding

technical issues. Review the main plan's objectives and

methods.

3 ProductionProductionProductionProduction

Objective : To produce according to the main plan.

4 Tidy-upTidy-upTidy-upTidy-up

Objective : To establish all the necessary resources for

support and continuing exploitation either in-house or by 3rd

parties.

Obviously the production phase is going to contain a loads of

steps many of which will not be synchronised. Each role may

have a separate agenda with a certain amount of 'this has to be

ready before we can do that'. Your planning job is to make sure

that each step has a clear objective. Often the people performing

the role will be able to fill in the steps and details and of course

estimate the timescales.

As mentioned above, teams thrive on achievement. Therefore

the good planner will find some milestones that indicate

progress that many people will have been working towards. For

example the UI design might be 'released for discussion' and

later 'approved'.

(By the way, a good team leader can manufacture 'progress' after
the event almost at will. These might be general such as 'we
now have six completed modules' or specific 'The testers have

passed the Foo module for full RFC9999 compliance' or personal

'Sarah rebuilt the server over the weekend'. The planner's job is
to provide objectives to work towards.)

"Objective" appears a lot here. The key thing is that an objective

is measurable. (Whereas an aim is an ambition that might mean

different things to different people.) A typical task for an

exerciser is to provide some sample data. The objective will be

to provide a certain amount for a specified purpose (by a certain

date). Perhaps the A-module stuff this month and the B-module

stuff next month. Team working practices or standards will

dictate what documentation or other notes are supplied in

addition to the raw sample data. In my opinion it is a really good

idea for the beneficiary of the work to check it out as soon as
possible and give feedback. "Thanks, that's just what I wanted"
or "It isn't doing foo when put through the bar-mangle". The

smaller the tasks the easier it is to focus-in on them and keep

discussions to the point.

Software development template

This is my standard development sequence.

1 Appreciate the task. Get a gut-feel for (a) What (b) How (c)

Amount of work

2 Top-down design (Evolving from "what will it do")

3 Bottom up design (Evolving "how will it work")

4 Proof of concept and prototyping

• Plan production

• Finalise design and review estimates of amount of work

• Check with users and confirm 'market'

6 Finalise development environment

• Write user documentation

• Write code. NB Possibly in stages.

• Get code to work (Exercise)

• Check code works (Test)

8 Build finished package of deliverables

9 Consolidate development documentation and review

Steps 5 and 7 are a mixture of things. It doesn't address the

complete software lifecycle. This is applicable to almost any

construction task whether building a server or a user manual. It

applies to the whole project in a general sense but is more

geared to the development of individual elements.

There are two good reasons for having a template such as this:

• Coding (or writing or soldering or translating) is part of the
job and it isn't at the beginning.

• Understanding the structure and semantics helps everyone

in the team understand what others are working on at any

moment. "When you've got your installation instructions

written I can try them out on my mum's old Mac. Do you

want me to exercise it or test it? If test then what's the

procedure?"

Finally

Once you've been part of a buzzing team you'll soon become

frustrated by the lumpen alternatives. When you have the vision

and the confidence but your boss is a feeble fumbler it might be

time to move on to other things - they will soon resent your

command of the situation and intuitive team building behind

their back.

Page 16 of 16

Figure 1

Appendix D

Trierarchy

This is a possible management structure for command and

control. It designed particularly

• for people who don't like committees or 'noisy' forums

• to give a definite management structure ...

• ... with the camaraderie of micro-teams.

• to be scaleable

• to minimise administration channels

• to support organic growth

It is not ideal for initially discovering who is who in the early

days of getting a team together from a large pool of recruits,

although as the structure forms it will help members 'find their

niche'.

Teams of three

I have noticed teams of three work better than teams of two or

four. There is no reason why all three members should be 'equal',

in fact the ease with which one can brief two close partners, or

can speak up 'against' with 'one third of the votes' means that the

team can share while at the same time not jumping to reckless

conclusions. For example the person who is naturally disposed

to fine detail will complement two that aren't really interested in

details without skewing the group's activities so they get bogged

down. Working with only two colleagues means relationships

are quickly and firmly built.

Linking together

How can we use these micro-teams together to form a larger

organisation?

For sake of illustration let's suppose that three friends (Red, Blue

and Green) decided to start a project. This makes a cozy team of

three.21 Now Blue recruits two helpers for 'her side of the

business' which means Blue is now part of two groups of three.

We might think of Blue as the 'senior' member of the all-blue

group (but as we'll see in a moment this may not be the case) ie.

the one that has all the project knowledge and who delegates

and educates. In total Blue has five colleagues. In the 'blue

team' success breeds success and another person is recruited.

There are two ways of dealing with this:

1 As shown in the figure: Allow slim teams of two.

2 Allow fat teams of up to six.

Which to use probably depends on circumstances and

preferences.

Looking at figure 1 without the explanation just given one might

think that top-of-the-tree is the blue team. It certainly seems to

be the powerhouse of this project. Which is the correct view?

For command and control matters the commanders are at the top

of the tree so the 'correct' view in this example is that the Red-

Blue-Green team is the ultimate controlling and coordinating

force. Where a trierarchy has evolved the more experienced

members are going to be the ones nearer the centre and so

they're in the best position to take decisions based on the history,

group experience and culture of the company.

What is the individual member's view? Typically they belong to

one micro-team as a helper and another as a leader. Ideally each

team would have two other members giving a total of four

immediate colleagues. A small enough number to get to know

given the restrictions of remote working. Everyone can be on

first name terms and have some idea of the personal qualities of

their colleagues and other pressures on them. Obviously they

will be well acquainted with what their team work schedule and

objectives are.

There is no reason why somebody in one branch shouldn't be

dealing directly with someone in another. For example suppose

the top-level threesome split into Finance, Coding and Other

then 'Coding/Quality/Exercise/ImageProcessing' might want to

work closely with 'Other/Deliverables/HelpDocs/Tutorials'.

However it seems reasonable to me for a micro-team to be

informed when an individual makes an 'outside contact'. This

reinforces team collective responsibility. This would also mean

that work gets peer-reviewed before being 'released' and 'doing

work on behalf of another team' gets approved by a team not just

an individual.

21
Tream?

