
Programming Version 0.4 Page 1 of 356

Programming
Peter Fox

A manual for everyone
 from novice to expert

This is a tutorial, starting from the very beginning, on how to be a programmer.
• Acquire the skills of writing computer programs
• Find out what makes programmers different
• Learn how to avoid the mistakes ordinary programmers make
• Develop your of creativity and concentration
• See the world afresh in the crystal sharp focus of precision analysis

Whether you're thinking of trying some simple programming, already do a bit, get paid
to program or work with programmers this book will open your eyes and put you on the
right track.

This is not a tome on Computer Science, and doesn't set out to teach a particular
language. The ultimate objective is to show how to become an elite programmer,
someone who can 'see through walls', asks the right questions of the right people,
produces sleek and robust programs...
... and be well paid, well respected and enjoying a superior lifestyle.

Programming Version 0.4 Page 2 of 356

About the author

Early days
Peter Fox has been a freelance jobbing programmer and business analyst since 1980.
He started working on programming word processors from machine code to
management awareness courses in the early days of office automation, including a fair
stint as editor of the BCS's Word Processing and Office Automation specialist group
newsletter.

IT revolution
During the 80's and 90's he cautiously exploited the developments in technology as PCs
went from isolated single purpose tools - to locally networked departmental groups with
a specific purpose and shared data - to fully networked, multi purpose systems.
Applications included: A lot of critical programming for various financial services
companies, stores, scientific inventory management, many odd databases, ad-hoc
technical support and a multitude of small programming and consultancy jobs. In
general his preferred approach is to establish a long term advisory and support role so
that clients can 'pick up the phone' about urgent technical issues or general strategic
matters.

Business analysis
His business insight has brought about significant changes to the quality and efficiency
of clients. One instance of this is a thorough investigation of the way in which 'High
street' optometry is managed within the National Health Service. Vague dissatisfaction
with the procedures and confusion about how to manage professional standards was
replaced by professionally designed procedures, an 'its so obvious when you put it like
that' quality system, methodically designed formal protocols, and a strategic plan for
implementation. The Bad-Good-Best model of competency (for clinical governance in
this case) was a result of this work.

The web
Publishing on the web started out as an interesting hobby in 1995, developing as the
technology, capacity and ubiquity of the web developed. Currently concentrating on
PHP and mySQL, the object is to combine robust system design with efficient code
production to exploit the many new ways organisations can operate in the new Internet
age.

Trivia
BSc. Degree in engineering. Was chairman of and coach at Tiptree Rollerskating Club
for 14 years. Qualified cycling instructor. Fool of Maldon Greenjackets Morris.
Songwriter.

Programming Version 0.4 Page 3 of 356

CHAPTER HEADINGS
0. Take aim
1. Begin!
2. The basic technology of programming
3. Logic
4. Control structures
5. First steps in coding
6. Data structures
7. Data gets intelligent
8. Progress review
9. Let us code
10. Databases
11. User interfaces
12. Good code (Anatomy of melancholy,Threads,Algorithms)
13. Testing and quality
14. Code interlude
15. Serving
16. Security
17. Assisted development
18. Get a life
19. Review
Glossary
A. Using Javascript
B. Binary logic
C. CD collection
D. TinyDate object
E. Compiling and linking. Libraries
F. Filing system
G. Quality in a nutshell
H. Two quick management tools

@@@ To be expanded. Needs to be presented as a dynamic progression not a bare
catalogue.

Programming Version 0.4 Page 4 of 356

Introduction
Objective
I was asked which was the better of two computer programming languages for a
beginner to learn. Neither was brilliant, so I did what hackers do - rolled my own. Then
I realised it was the wrong question, and I should have read between the lines:

How does a non-programmer become a programmer?

It soon became clear that the programming languages, development environments,
computer science references and years of experience were secondary to:

By thinking like a programmer.

That is the objective of this book. You can use this book to go from complete novice to
elite programmer, to learn how languages work, to discover how to design a program,
how to convert ideas into high quality software and what techniques of logic and
automation will give efficient and reliable results.
• To begin with, for outright beginners, we'll work with a paper and pencil instruction

language to get the feel for 'giving instructions'.
• Then there's a look at the basics of computer languages - a bit of hands-on

Javascript and HTML.
• Followed by an introduction to Object Oriented design and programming with

exercises that you can follow in whatever language you've chosen.
• Gradually the subjects become more technical and the exercises more detailed

giving you the opportunity to learn a little at a time both the knowledge and skill
aspects.

• As we go a theme is developed emphasising the importance of applying intellectual
effort. The brain is a magnificent tool and I show you how to apply it to developing
high quality software.

• Finally we look at the necessary non-technical aspects of being a programmer such
as inter-personal skills and self-discipline.

This book is designed for anyone who is not afraid of applied brainwork.
• the absolute beginner
• the person who is doing 'a bit of programming'
• non-computer people who wonder how to make the best use of the best

programmers
• career programmers who are wondering what is it that makes the best stand out

and shine.

Becoming a programmer
Not only is programming creative, intellectually challenging and fun but people pay you
well too!

Programming Version 0.4 Page 5 of 356

1 This term Real Programmer will crop up a lot. The insights and exercises in this book
should give you the necessary leg-up to become an elite programmer capable of useful
performance far beyond the average code-wallah. (Some people say 5 to 10 times better!)

2 Or the knowledge that you have the knowledge - There's a bit of Zen in all this.

3 Dumping rubbish is unpleasant but necessary. First somebody has to identify clearly,
backed with figures, what is rubbish. Real programmers tend to be detached from
politics and are often ideally placed to supply wood, nails, and drawings for a cross. More
at the end.

4 Don't expect adequate recompense for saving bacon and many thousands of pounds.
That's why good programmers should get paid large amounts of money for all that they do
even if only 2% of their (often extra curricular) work brings in the Big Wins. All Real
Programmers can tell you of, literally, five minutes where they cracked the case - often
against opposition from slugs in suits! No wonder they're a feisty bunch.

• A technician is somebody who can understand instructions of a technical nature
and if things go wrong can blame somebody else.

• Management usually takes the responsibility of actually making workable systems
work and even defining what "work" means. To make a workable system fail you
have to be management. To insist a hopeless system is delivering results you have
to be a suit.

• An engineer is someone who has the responsibility for designing and building a
workable system.

As a Real Programmer1 you will be an engineer. You'll have far more knowledge about
the technology than the technicians and a much better grasp of the Right Way to do
things than the suits. If, by half-way through this book you've cottoned-on to the
concept of 'a real programmer as an engineer' then by the end you'll have the
knowledge and outlook (if not yet the experience2) to be able to make an impact. This
'impact' might be in personal achievement of being able to write a program to solve
Sudoku puzzles, or to collect the data and draw the graph that gets the sales manager
sacked3 for being a useless waste of space - or gives the sales manager the tools so they
can achieve their aspirations.4

If all you want to do is learn how to program in language 'X' (where 'X' is your particular
choice of language) then this book will help you a bit, but not enough to be an expert in
'X'. Go and get "How to program in 'X' in 27½ minutes".

If you have already done a bit of computer programming then *this book is for you*
even though you think you know the subject. Hey! Guess what books steam engine
buffs read - Yes, that's right: Books on steam engines. This is a specialist subject and
there are loads of wrinkles and fundamental concepts that you can miss even if you do
the job every day. One of those might change your whole outlook, prevent grief and
open the odd oyster or two. You should still browse the early chapters and you might
find the exercises are useful refreshment.

But most of all, without prejudice to the above, this book is for people who want to
program who have never done this sort of thing before. There's a nice slow start and
even though later on the concepts might be complex, you'll be surfing the crest of the
wave and it will be easy.

Programming Version 0.4 Page 6 of 356

5 Yes, I know. If you can't read then what's the point of giving you instructions in writing!
This is an example of the pernickety logic of programmers. Details details details!
Possibilities, consequences, consternation. Opportunity, solution, result. Yes!
Programmers can provide solutions to opportunities as well as problems.

Instructions
How to read this book5
- Twice

First time all the way through...
... start to finish
Goodness in every chapter.
Follow up details or key words by Internet searching

Second time as a review picking out the emphasised words and asking yourself
how confident are you with them.

Note Don't get part way and give up because this book often gives partial and
suspect advice to begin with then finishes it off properly in a later chapter when
you're more comfortable with the foundation skills.

There are no icons to say 'Important', 'Tip', or 'Trap'. By the end you'll understand why,
but as this is the beginning, the beginning of a career perhaps or a new direction that
will show you things in a different light; I'll just say it is up to you to read the words
which are quite sufficient (if not excessive) in themselves. This book will take you
however long it takes. I can't say how long it will be before you fall-in to real
programming, but when you do you'll begin to realise why programmers are a bit apart
from ordinary mortals. They have X-ray vision, insatiable curiosity, the arrogance that
comes from knowledge, the insight that comes from contemplation and the confidence
that comes from having checked a few facts before the meeting.

Have you ever tried to start a recalcitrant outboard or motor mower? You fiddle and
sweat and try again until eventually (you hope) it bursts into life. That's how I feel
about YOU. I'm trying to combine the magic spark of intelligence combined with the
fuel of curiosity and the oxygen of back-to-front-front-to-back programmer's logic to
make YOU light up and start motoring. Somewhere in your progress through this book,
probably about chapter 5 or 6, you'll (as we say in Essex) 'fall in' and the slog turns into a
sleigh ride.

It takes an afternoon to do a parachute jump, a week to go solo in
a plane, months to get a pilot's licence and years to become an
airline pilot. To become a programmer is equivalent to becoming a
pilot. It will be years of working at the more advanced ideas in this
book before you're competent to take charge of important projects.

The vital thing is to set your sights NOW on being really good at
whatever level you aspire to.

Programming Version 0.4 Page 7 of 356

6 Programmers start counting from zero. This will be explained later.

7 Ah yes, well : Just like artists who sometimes like to play around with reality,
programmers are prone to "what-if" and "wouldn't that be unreal". This is flexibility of
thought developed from an acute sense of awareness that information isn't really real.

8 'Foo' is a Metasyntactic variable - Luckily there is a handy glossary at the end - There will
be lots of Foo later on so worth having a look.

0. Take aim6

In this book I describe how you need to think to be a programmer. It's about sharpening
your perception how the world works, wondering how it might be rearranged more
conveniently, and finding exactly the right way to implement a little bit of progress.

Suppose you wanted to learn to be an artist, then part of the syllabus would be
materials, tools, and methods of using them successfully. The important part would be
how to think like an artist and acquire the basic language of art in order to capture and
develop ideas.

Programming, like painting, is a bit of an art and a bit of technology. There are styles
and techniques which may or may not go together. Who remembers Monet's rough-
hewn granite sculptures or Titian's photographic montages?7 There are plenty of books
in the library that will take you through the steps of learning a particular programming
language. If you've been told to learn a particular programming language that's fine -
Except "Learn Foo8 in a day" is as much use as a typing course for an author: Great for
typing, but rubbish for writing a novel.

So to summarise: This book will teach you how to be a programmer not how to program
using a specific language.

Frequently asked questions
Q: How long will it take?
A: Days to realise this is something that will be worth spending weeks getting started

and a lifetime perfecting.

Q: But my friend learnt programming in a few days!
A: No they didn't. What they did was learn part of a programming language and some

bad habits.

Q: I've done quite a bit of programming and think I'm fairly good. Why should I bother
with this book?

A: You may not have the breadth or precision of intellectual approach or practised the
techniques that are developed as the book progresses. It is easy to be adequate in
your eyes when missing a lot of tricks, becoming complacent and failing to build on
opportunities.

Q: What programming language should I use?

Programming Version 0.4 Page 8 of 356

A: The early chapters this book use Javascript which is built-in to your web browser.
See appendix A for how to get started with Javascript.

When we come to databases there will be some SQL. If you don't already have a
database that implements SQL then try MySQL which is freely available (and very
good).

Later chapters are not language specific although one chapter does use PHP a lot
for concrete examples. Whatever languages you use at least one should support
objects.

Because 'visual programming' is difficult to describe I'm going to have to leave you
to your own devices. (In my view Windows-only options should be avoided if
possible.)

Q: What else do I need?
A: Pencil, paper and plenty of quiet time.

A computer that you have permission to develop programs on and create your
private directories. Text editor. Modern web browser.

Access to the Internet to follow up loose ends - in particular computer science
matters and investigating development tools.

Q: Are there any particular success factors?
A: Yes - Three

1 Being organised and efficient
2 Making the effort and taking time to develop your skills
3 Believing me when I say "It's not difficult - Just a little strange at first."

If you are starting completely from scratch then the combination of Javascript,
MySQL, Java and PHP will be ideal. All are freely available.

Programming Version 0.4 Page 9 of 356

1. Begin!

Take a piece of paper and write on it with a pencil.
Beginner

What have you got? Does it do anything, say anything, download or control anything?
Answer - No.

Now write again :
I am a beginner.

You've now got something more. A statement in the form of a sentence with correct
syntax. Whilst it doesn't do a lot it does more than the first exercise. It makes sense to
a reader of English. That is, a reader of the English language can understand it.

Now write again :
All beginners start here.

Is this an instruction or simply a statement of fact? (Statements of fact are sometimes
called assertions.) English and the way we use language has plenty of scope for
ambiguity and different interpretation of the same thing. "Can you write backwards?"
can be answered "yes", "no" or "backwards" (or "what do you mean exactly"). This is why
computer programming languages are more formal, so that instructions will always be
interpreted the same way.

Here is a simple instruction that I want you to follow:
Draw a three-dimensional view of an ordinary die (some people call one die a dice)
as it might look like sitting on a table etc. (draw a Y for the nearest corner and fill in
the other edges.) (You should have one diamond sitting on two others.) Now add
numbers or spots to the three faces of the cube you can see.

Notice there are three sections in brackets - let's look at these in turn:
1 'die' and 'dice' : There are sometimes different flavours of language usage. The same

applies to programming languages which develop over time. I've always called a
single cube with spots on "a dice" though pedants call it a "die".

2 I gave you some instructions in the second set of brackets for how to do the
drawing. Often programmers need to say "use this method". There is a technical
term which you need to know called an algorithm. This means 'a method of doing
things' and is one of the fundamentals of programming.

3 The third bracket is an assertion (see above - a statement of fact). Programmers are
always checking that things are going as planned. Not only will you be making
loads and loads of mistakes and foolish assumptions but the Real World has a habit
of doing its own thing. Sometimes programmers call this a sanity check.

Programming Version 0.4 Page 10 of 356

Stop!
You have just learnt more about programming than many people will ever learn in a
lifetime. We will go on with the dice (or die) in a moment, but let us review the
fundamentals:
• Language : What's written and what's read.
• Language : There are rules for writing and reading.
• Language : Various varieties and sub-variations of rules
• Meaning : Depends on skill of writer and intelligence of reader
• Unintended meaning : A trap.
• Instructions : eg "Turn right at the Church".
• Instructions : Rely on clear meaning eg "Go North at All saints Church"
• Assertions : Statements : eg "You are now at the pub."
• Algorithm : Complete method.

You are now about half way to having a complete mental toolkit for programming.

You may be asking "How does a computer 'know' how to do things". Good question. At
the most basic level a computer is a machine engineered in such a way that it can carry
out very simple instructions. That's the transistors and all that sort of stuff where the
binary 0's and 1's are. Clever designers assembled more and more transistors to get to
the stage where there were hundreds of instructions. Just like there are people who
enjoy the art of putting together bits of coloured tiles to make a mosaic, so there are
programmers who work out the best way to say find the square root of a number using
only plus, minus, multiply by two and divide by two. They did this in such a way that
the instructions were available in a bundle to be used as required by other
programmers. Phew! Thank goodness you don't have to work out all those instructions
yourself. And the put-together-lots-of-small-bits-to-make-something-more-
sophisticated process continues: The square root program fragment is used by
somebody who writes a mathematical equation solving program - which is used in turn
by somebody who wants to solve statistical problems which is in turn used to help
forecast the weather. Does that answer your question? The answer is: Because
somebody told it how to do things.

Not all computers can do the same things. For example there is a computer in your
keyboard which knows things like how to wait a while, how to tell if the key H has been
pressed and let go, how to switch the Caps Lock light on and how to 'talk' to the main
computer. Some computers will give you a web page if you ask in the right way, others
will tell you the way to get somewhere if you touch a screen. Then there are those that
work out your wages and taxes. The important thing to remember is that we build,
adapt and spend a lot of time and money on these machines because they do
something useful. When you start programming the useful thing you'll be doing is
learning, but one happy day somebody will pay you to get a computer to do something
useful.

A programmers job is to understand the useful thing that needs doing well enough to
pick the right instructions to make that useful thing happen - preferably using as few
instructions as possible with 100% reliability every time! You probably won't have
much trouble finding a suitable computer for 'office' uses but some computers are more
suited for some things than others. It may be a fantastic tour-de-force to put the

Programming Version 0.4 Page 11 of 356

9 Sometimes they take the cleverest from x41 to x5A - or take frugality so far it comes out
the other side. This cryptic comment will become clearer on page 999 when we discuss
the art of hacking.

company payroll on an iPod but by and large programmers always take the quickest
route from A to Z.9

Back to that dice
When I asked you to draw a die/dice I gave you some instructions but didn't bother with
what a pencil is, how to sharpen it, which end works best and I don't know enough
about your environment to tell you where to find a pencil. In practice this works out
alright because I can be fairly certain of the environment in which my instructions are
being interpreted - I expect you've got better things to do than read this when you're in
the middle of a five-a-side archery competition, or if you haven't, then have enough
nous to ask for pencil and paper when you get to hospital. Programmers are often
tripped up because they make false assumptions about the environment. For example
you might be reading this on an aeroplane and not have handy access to pencil and not
want to use the margin of the book to write in. We will look at ways to reduce
exceptions like this to a minimum later.

Language level
In terms of the language of programming we looked at in the previous paragraph 'draw
a dice' splits into English/human instructions. Those instructions are individually
broken down internally into things like 'find pencil, is it sharp, if not then sharpen it' and
further into the method used for sharpening a pencil. You learned about how to hold
the sharpener and twist the pencil at school. : I don't have to tell you now. Even if I
was minded to do so I could get into trouble because some people are left-handed and
others have propelling pencils.

There are low-level languages which 'speak computer' and high-level languages that
'speak human'. As there are different sorts of computer so there are different low-level
languages. As humans like to do different things so different sorts of high-level
language have evolved. In the next chapter we'll see how most of us don't need to
worry about what goes on at a low-level.

The advantage of working at the highest level possible is that these nitty-gritty bits can
be dealt with at some hidden lower levels without any need to worry about how they
actually happen. Well sort-of: Want a square root? ... Ask a calculator or spreadsheet.
How easy is that? Now can you tell me the square root of -64? Ummm. Programmers
always work within limits. Understanding where these are in any particular situation is
important. How useful is it to take a week to calculate tomorrow's weather forecast?

Data
Just to get this out of the way. Data is what is worked on. For example the items in a
shopping list or the PIN for a cash card. Music files, picture files and word processed
documents are all data. File? A load of data which we can identify by name. Uncle
Charlies' will, Auntie Maude's horse racing tips, Events in September and so on.
Programmers need to pay a great deal of attention to files, so we'll have more than

Programming Version 0.4 Page 12 of 356

10 Programmers often explore different ways of being precise. They may do this just to keep
the brain cells active, but sometimes they use it to underline a point or place a 'must come
back to this later in case there are details that need looking at' marker.

11 If I recall the results of one study correctly 45% of real time projects were abandoned, 50%
need significant alterations before being considered acceptable and 4% worked first time
as advertised.

zero10 chapters on the subject.

Five-a-side?
When I referred to "five-a-side archery" you didn't really think I meant exactly that did
you? That was a placeholder for 'some other activity where pencils are not easily
available'. As a programmer you'll be using placeholders all the time. Later on we'll be
looking at a shopping list and sending you out shopping with it. When discussing the
list it will be much clearer if I can use typical items which you replace with the actual
items when you come to do it yourself. For example www.mysecuresite.com looks like a
placeholder for 'any web site'...

...But on the other hand when I want to describe instructions I will find it clearer to give
names to items that are being manipulated in the way that algebra works. In computer
programming names are called variables. "To get the difference: Subtract small_number
from large_number".

We will now finish this opening chapter with a traditional first program. Somehow the
first program you write always does one thing : It displays the two word phrase "Hello
World" We can do this in Beginner - It isn't very exciting to look at but to get this far
you've done very well, learned a lot and might have twigged that programming is more
thinking about things in the right way rather than slaving at a screen - A cat may walk
on a keyboard but it takes an intelligent ape to get 4% of critical projects to work as
planned.11

0. With paper and pencil:
1. Write "Hello World"
2. Go to pub for congratulatory beer

Programming Version 0.4 Page 13 of 356

2. The basic technology
of programming

Some of the statements here are only mostly true for the sake of a quick journey through
what can easily become Geek-territory. Even if you've never done any programming
before you should have no problem with 'giving the right instructions in the right order'
but some of the technical terminology might be daunting. Don't worry, there is no test
at the end and those matters look a lot less shifty when you're actually getting stared
with a 'real' computer language.

Shocking news!
You had to find out sooner or later : A list of computer instructions is called a program.
Putting the program to work is called running, or executing it.

How does a computer know what to do with a program? We did this one in the last
chapter : Somebody told it (using another program) how. Let's try an example.
0. With pocket calculator:
1. Type in 365.
2. Follow instruction in box called

DAYSTOWEEKS.
3. Result: Number of weeks in a

year.

Here is the sort of format a typical programming language might use to express the
same thing

include(MathFunctions);
days := 365;
weeks := Math.DaysToWeeks(days);
print("There are " . weeks . " in " . days);

For now all we need to take from this example is
a The computer reads instructions from top to bottom
b It may know how to do some things if asked nicely. For example days := 365; is

an instruction saying "until further notice when you see 'days' I want you to use the
actual number 365.

c It is universal programming style to say where you're going to put the result, then
put = or := depending on the language then instructions for how to get the result.
So for example a = b means put the whatever the value of b is into the storage
space known as a.

d We may need to tell the computer to look up special instructions or get hold of a
particular resource. In this case how to convert days to weeks. You've already
guessed that 'include' is an instruction with what to fetch in brackets.

Don't worry about the exact syntax used above - I made it up anyway.

DAYSTOWEEKS
0. Press the divide button.
1. Press 7 then equals.

Programming Version 0.4 Page 14 of 356

Variations on a theme
When our made-up computer came across the line "days := 365;" it had to do
something like "Oh a new line...better see if I can make sense of it...Aha! 'something := something' is a pattern I
understand...the first something looks like a variable name...I better find a space to put whatever it is going to represent...and
make sure I can find it again if necessary by putting it in a list...and here's the second something...It's a number...that's all...so I'll
convert 3-6-5 into my numbering system...and put it in the place I've just reserved for it...a semi-colon...that must be the end of

this line and I could understand everything." That's a lot of work just to make a note of a number.
Computers might be fast but doing this every time we want to run the program looks
inefficient. Hey! We're programmers and inefficiency will be hunted down and
eliminated. Sure enough since the early days of computers lynch-mobs of programmers
have been working at how to address this issue. The result is a program called a
compiler. (You need to know this term.) A compiler takes program instructions that
you can read and turns them into the most efficient set of instructions in the computer's
own language. If you recall when we discussed high-level and low-level languages I
said that most of us don't need to worry about the low-level. The reason is that a
compiler will translate our high-level stuff into something the computer can understand
directly.

There is another benefit from having a compiler looking at your instructions before you
try to run the program for real: It can pick up some of your silly typing mistakes ahead of
time. Let's suppose your program works for an hour then finally comes across an
instruction that it can't understand. There will be a gnashing of teeth and possibly
wailing when all that time has been wasted and you have to start over again. Or it
whirrs away for an hour and you begin to suspect it has entered an infinite loop. (We'll
deal with this common error later.)

To cut a long story short, as technology improved another way of running programs was
found which was exactly the original plan where each line of instruction is interpreted
at a time. Yes it was slower to process, but it was much faster from the human point of
view. A typical 1970s program would be punched onto a set of cards, handed over to
the computer room, run when there was a convenient slot in the schedule - often
overnight, returned with a listing of errors or a wodge of printout where something went
wrong, then the mistake traced by hand and the corrected cards resubmitted. Perhaps
one of the origins of the 'all hours of the day are equal to us' culture is that programmers
could get computer time early in the morning or at weekends. (And nobody expected
you to wear a suit and tie at these strange times either.)

The interpreted language that revolutionised the 1980s was BASIC. Not only was it
small enough to fit onto the micro computers of the day but it was also easy enough for
engineers to pick up and see the potential of for doing real work. BASIC came in many

For those of you who want to see what a computer program looks like to a
computer here is one I wrote to speed up the repeat key:
B4 03 B0 05 B3 00 CD 16 B4 4C CD 21

This is just a list of 12 hexadecimal¤ numbers. "B4 03" (or 180 3 in decimal) says
"First number is 3" as instruction number 180 puts the next number it finds into the
processor's ready-use location. It's a bit like pressing "3 M+" on a calculator.
Numbers like this are known as Machine code - If you're interested in tweaking
electronics then look up Assembler as well.

Programming Version 0.4 Page 15 of 356

12 K is short for 1024 or 'about 1000'. More details in the glossary.

13 But line numbers are great for explaining what's going on where which is why we'll be
using them in Beginner.

14 Hey! You say. Didn't you just tell us in chapter 0 programmers start counting at 0? Yes I
did, but sometimes we have to conform to the prejudices of the real world.

15 Or as it used to be, literally bashed out on a Teletype terminal with a noisy rattle.

flavours but once learned it was easy to move from a machine with 32K12 Bytes of
memory to the company mini-computer with a hard disc, printer and possibly 512K of
memory. Here is an example BASIC program to give you a flavour.

10 DIM A$(7)
20 DATA "Mon","Tues","Wednes","Thurs","Fri","Satur","Sun"
30 FOR I = 1 TO 7
40 READ A$(I)
50 NEXT I
60 INPUT "What number day of the week (0 to end)", D
70 IF D = 0 GOTO 100
80 PRINT "Day number "; D; " is called "; A$(D);"day"
90 GOTO 60
100 END

BASIC did what it was originally intended, opened the door to programming a
computer for millions of people. It also developed, but every development has involved
a lot of looking back and it will never be the computer language of the 21st century for
reasons you will discover later on.

If you want to know how to interpret this program here's a brief explanation: (This is
the throwing-in-the-deep-end-bit. Don't worry the lifeguards are waiting in the next
chapter.) The lines are numbered for convenience of being able to jump to a given line.
That's what happens in line 90. Modern languages don't use line numbers13. Line 10
sets up a data structure called an array. Both Data structure and Array are very
important. Here the array is a list of seven spaces for storing strings. Strings?! In
computer programming parlance strings are bits of text. Line 20 gives the program
seven strings which are put into the array called A$ one at a time starting from slot
number one through to slot number seven.14 Can you see how I gets shuttled round the
30-40-50 loop. Line 60 prints a message asking for a number on the screen15 and waits
for the user to type in something and press the Enter (AKA carriage return) key. Line 70
jumps to the end if the user typed in 0. Line 80 prints two variables sandwiched
between three constant strings. The first variable D is the number we just typed in, the
second is the Dth slot in the A$ array. If D is 6 then A$(6) gives "Satur". Sticking strings
together is called concatenation. The program logic flow now jumps back to line 60 to
see if we want to have another go.

We never get to the end from line 90...will the program ever stop?...oh yes, possibly,
from line 70. One of the reasons we don't use GOTO in modern languages is precisely
because we can end up in a mess trying to trace the program logic. (The term for a
program where the logic flow skips all over the place is called Spaghetti code. this is
one of the reasons BASIC got a bad name - because it made it so easy to write
spaghetti.)

Finally, and vitally, what could possibly go wrong?, and how can these problems be

Programming Version 0.4 Page 16 of 356

dealt with? For example what happens if somebody types in 66? We may have spotted
the potential problem and validated the input (for example by making sure it is between
1 and 7) or there may be others lurking that we haven't thought about that we need to
catch to at least give a soft landing. The original BASIC had no way of dealing with
unexpected runtime errors apart from just stopping with a cryptic message - This
became a serious problem when BASIC was used for real applications.

Review
If you've got this far then well done! I expect you're realising there's a lot of meat on this
chicken. Don't worry - There is a lot of meat - but you don't have to take it all at one
sitting! And anyway if it was really easy then everyone would be doing it and we don't
want that do we.

What you need to know is:
• Computer languages are designed to be human readable
• A program is a list of instructions which the computer will translate into its own

instructions either
• once-off in a compiler, or
• as-you-go in an interpreter.

• A written bit of a program is called code. For example I might say "The code for
loading the array starts at line 30"

• Different languages have different key words...
• ...and different capabilities, ways of representing variables, organising code and

dealing with errors. Some don't use the list of instructions style at all - We'll look at
one of these in a minute.

• There are all sorts of ways errors can happen - some of which you'll probably never
discover.

Where's the logic gone?
0. With PC connected to the Internet
1. With a web browser
2. Visit a web page
3. View the source
3.1 Try
3.2 A right-mouse-click should give a menu containing "view source"
3.3 Except
3.4 If 3.2 doesn't work then look for View on the top menu. If that fails

try following the Help in the top menu.
4. Repeat from 2 (with new web pages) until you've got 3 or 4 pages of source

code.
5. Assertion : You've got a few pages of gibberish on the screen.

Let's look at this Beginner code from a programming language point of view.
• 0. and 1. say what resources are needed. A bit like 10 DIM A$(10) eh? we'll see a

lot more of this later.
• 3. has been expanded to give the important instruction in 3.2...
• ...But not all browsers work the same so we have trapped something going wrong.

Programming Version 0.4 Page 17 of 356

16 For the record 'Object code' is what a compiler produces from the source code.

17 If you dropped punched paper tape that just got into knots. With PPT you had to rewind it
each time after running through a reader, and since you couldn't just swap a card to fix a
typing mistake you might cover some holes up and punch more with sticky tape and a
hand punch. I've done that.

• Source is the term used for the program as originally written.16

• 4. is a conditional loop.
• 5. is a sanity check. We need this because the next section depends on this one

having achieved its purpose.

Yuk!
What you're looking at is computer instructions. Scroll to the bottom and you should
see something like </body></html>. You can decode these as follows:

<...> = Instruction
/ = End ...
body = Subsection of HTML document that contains the bulk of the page
html = Block of HTML program code

HTML is the language used to write web pages with. Note: In HTML the instructions
in angle brackets are called "tags". Since everyone calls them that we'd better conform.

So if there is a </body> (= end of body section) there should be a start of body tag
(looking like <body>). Search for this. Very close to this you should see the end of the
head section (</head>). By looking at all your sources you should see all the pages
conform to this pattern.

There might be all sorts of junk at the top of these pages so go back down to the bottom
and have a look around for other tags. You should see a pattern of <foo> ... </foo>.
(Remember "foo" is a metasyntactic variable which 'stands for something' possibly i or
div or table or tr or h2 and so on.)

That's enough grovelling through gibberish - how about writing your own simple web
page which will be a test bed and technology demonstrator. Trying out something for
yourself is a typical programming gambit. What works for somebody else may not be
suitable, or simply may not work, for you. Also having a go yourself 'burn's in' some
basic knowledge that makes more complex details easier to interpret.

Starting to code
In ye olden days before everyone had access to their own terminal we used to write
programs (in pencil so we could erase mistakes) on "coding forms" which had eighty
columns marked across the page each allowing a single character to be written. These
would then be punched (often by dedicated staff) to give a bundle of punched cards,
one card per line. Guess how popular you were if you dropped a bunch of cards on the
floor17. Then the cards were stacked in a hopper with top and tail cards to tell where
the start and end of the job was and who was going to get the bill and next day (literally
if you were lucky) you'd have your printout wrapped around your stack of cards.
Sometimes there were only certain times when certain programs could be run, so if you
missed your window to get things right you might have to wait days. Of course a
program running perfectly first time was unusual so you'd change a few cards and go
through the whole thing again. All this slog was rewarded by great satisfaction when

Programming Version 0.4 Page 18 of 356

IT WORKED AT LAST!

So now you can see why programmers despised sloppyness, hand waving and suits and
developed maverick working practices characterised by bursts of intense concentration.

Your turn!
In many ways your coding routine is a lot easier, but I'd still recommend trying to cut-off
from the distractions of the world while squeezing brain juice into your fingers and onto
the screen.

0. With a PC, web browser
1. With a text editor
1.1 A text editor is a basic sort of word processor. As programming

languages don't like odd things that word processors add into text to
prettyfy you can't use a Word processing program. Instead...

1.2 All PCs have a text editor somewhere, or you can download one to suit.
(On Windows look for a program called Notepad.)

2. Finding a text editor was probably the most difficult bit
3. Type in the following.
3.1 You don't need to get the layout exactly right but everything else must be

spelled correctly.
<html>
<head>
 <title>A first web page</title>
</head>
<body>
 <h1>Hello World</h1>
 This is normal
 This is bold<i>and italicand red</i>
</body>
</html>

4. Save this to your temporary directory as first.htm
4.1 If you don't have a directory called temp make one
4.2 Everybody needs a temp directory to put their transient files in
4.3 You now have a file called first.htm in your temporary directory
4.3.1 Go and have a look in the temp directory.
4.3.2 If all you see is "first" and you are on a Windows system then you

need to set up your 'explorer' to show file extensions. Set to ON, leave
to ON and wonder at the stupidity of people who put up with a
computer system that censors vital information. File extensions are
a vital part of the technique of programming.

5. 'Point' your web browser at temp/first.htm.
5.1 On a Windows system double clicking on the file should be sufficient
5.2 Other operating systems may need you to enter something like :

file://temp/first.htm into the address bar.
6. You should now see your first web page.
6.1 Compare what you see on the screen with the code. (You can view-

Programming Version 0.4 Page 19 of 356

18 BASIC, which we saw above, is one that doesn't.

19 1 as in biggest, 6 smallest

source as you did above to prove there has been no trickery to change
your code.)

Round the loop
Hooray! Well done. If that was a bit of a struggle then don't worry, in a moment we will
do the same thing all over again and this time it will be a doddle because you've
already got the bits you need lined-up and know how to make them work.

Let's look a bit more closely at the code in first.htm.

There are no line numbers but perhaps your text editor has an option for showing them.
Worth having a look for the option now or getting a better text editor as you'll need
them in the future.

We saved a text file then ran it. In a moment we'll improve it and run it again. This is
the basic coding process. There is a lot more to programming than simply coding, for
example finding out what needs to be done, finding a way to do it, and testing to prove
it really does what you wanted.

Blocks
Practically all programming languages
have ways to organise code in sections
called blocks.18

HTML illustrates blocks nicely.
Remember that <foo> marks the start of
a block of foo and </foo> marks the end. So the html block extends from first to last
lines and contains two child blocks: head and body. The h1 block is a heading-size-1.19

When the interpreter inside your browser reaches the <h1> instruction it says to itself :
Make everything bigger from now on. When it reaches </h1> it says to itself : Cancel
that <h1> instruction from now on.

Blocks are like shoes and socks
Try this and see what happens.
0. With pair of socks and shoes
0.1 Start with bare feet
1. Put on socks
2. Put on shoes
3. Walk around
4. Remove socks
4.1 Slight problem!
5. Remove shoes
Now look at the bold-italic-red line of code. Notice how the blocks nest they don't

Two common ways to indicate the start
and end of blocks are

begin ... end
and { ... }

Programming Version 0.4 Page 20 of 356

20 Hacking is frequently seen as a Bad Thing, but started as the coolest technical activity and
resulted in huge steps forward as people showed what was possible - and upset the
people who wanted to sell overpriced junk to mugs. More about this important aspect of
programming in a later chapter.

21 Base 16 numbering with digits 0 to 9 then A to F so F is '15' and FF is 255 - See glossary for
more

overlap.

Another way of typing that line of code could be:
 This is bold
 <i>and italic

 and red

 </i>

You can see that it is sometimes really handy to indent code in this way. Indenting is
pretty much a universal layout aid - that's why coding is done using mono-spaced (ie m
is the same width as l and all other characters including a space).

A useful quirk of the HTML language is that it treats all whitespace (tabs, spaces, new
lines, blank lines) as a single space....
...which is why the browser stuck "this is normal" on the same line as "this is bold...".
Did you expect that? Let's do something about it anyway.

0. Back to the editor
0.1 Edit the first.htm file
1. Add "<p>" after "normal"
1.1 Don't type any quotation marks
1.2 <p> means 'put in a paragraph break'
1.3 In HTML <p> doesn't need a </p> (Later we'll see a 'paragraph'

instruction that is a block.)
2. Change the shade of red
2.1 Replace "red" with "#ff6060"
2.2 See the discussion below for what this is about
3. Save the file
4. Look at the file again with the browser
4.1 Possibly just refreshing the page
5. You should see a new line after normal and a muddy red colour

The lure of Geek
What is that #ff6060 all about then? You can see the computer thinks it is muddy red
but so what? You're looking at the buzz of programming in a microcosm. By knowing
spells that ordinary mortals don't you can achieve things they can't. They respect and
fear your powers. Amongst programmers feats of ingenuity and technical prowess are
appreciated for their wizardry and cleverness - and called hacking20.

To an experienced hacker #ff6060 shouts "hexadecimal"21 In the case of HTML the #

Programming Version 0.4 Page 21 of 356

tells the interpreter to expect some hexadecimal next and the next 6 characters are
three lots of two being how-much-red, how-much-green and how-much-blue to mix
together to give the required colour. ff0000 is all red, 0000ff is all blue (you can try these
yourself and others) ffffff is white and 000000 is black.

Now if I tell you that the whole page can have a colour, you do this by putting
bgcolor=foo inside the opening <body> tag, for example <body bgcolor=#bbffbb>,
then you can have hours of innocent fun editing-saving-refreshing. We'll do some more
HTML in a later chapter, but if you can't wait until then have a look at some more
sources and surf to a HTML quick reference.

Review
You are a programmer! With your code editing tool you can create a program that a
web browser can interpret. You've also scratched the surface of computer geekism with
hexadecimal.

You were probably dismayed by the gobbledegook when viewing the source code.
Don't worry it dismays most programmers! Looking at somebody else's code, or yours
from a while ago, is daunting. (Obviously if you knew a bit more about HTML and
Javascript and DOM and weird Microsoft additions then things would be a bit clearer.)

We've seen how HTML is structured by nested blocks which is a basic feature of
practically all languages. However most have additional ways of dividing the code into
smaller and more manageable units.

Programming Version 0.4 Page 22 of 356

3. Logic
With HTML the flow started at the top and went on to the end - always. There is no
way to say "repeat this bit until..." or "if this then do that". Most computer programming
languages do have these sort of features.

If
Fancy a mug of coffee? Let's try it.
0. With kitchen
0.1 Kettle, water, instant coffee, spoon, milk, sugar, mug
1. If there isn't enough water in the kettle, then put enough in
2. Switch kettle on
3. Find mug, coffee and spoon
4. Use spoon to put some coffee into mug
5. Wait until kettle boils
5.1 NB. Assume kettle switches itself off automatically
6. Pour hot water into mug
6.1 If having 'white' then leave room for milk
6.1.1 If 'milky'
6.1.2 then fill to 2cm short of brim
6.1.3 else fill to 1cm short of brim.
7 Possibly add sugar
7.1 If having sugar:
7.1.2 Sweeten to taste
7.1.2.1 add sugar to taste
7.1.2.2 stir

Let's dissect this:
0 We identify the resources we might need
1 IF ... THEN crops up just about everywhere. This switches the flow of control

once depending on a certain condition.
2 The kettle starts heating the water...
3,4 ... We don't have to wait for this get to the boil - we can be doing something else

at the same time. (Programmers call the two independent stream of events
threads. More about this important subject in a later chapter.)

5 Do nothing until... This is a sort of reverse IF ... THEN where something
continues to be done if the test is true. Waiting relies on us doing nothing
except being awake enough to realise when the conditions are right for us to
continue.

5.1 This is a comment that explains how the program is operating to somebody who
is reading the code. It is generally considered a Good Thing to put plenty of
comments in your code. An interpreter or compiler needs to know what bits are

Programming Version 0.4 Page 23 of 356

22 HTML comments look like <!--- foo -->. More line-by-line languages have symbols to say
'rest of line is a comment' More in the glossary.

comments and for human eyes only. Each languages uses its own
conventions.22

6.1.1 IF...
6.1.2 THEN... We dealt with this in 1.
6.1.3 ELSE... This is an alternative to 6.1.2. IF...THEN...ELSE also crops up just about

everywhere. Of course all it means is 'do this OR that'.
7.1.2.1 and 7.1.2.2 are a block of code (you remember blocks from the previous chapter)

which we might call the 'sweeten to taste block'. For illustration let's show that
in two styles of programming language:

if (sugar==TRUE) { if sugar then begin
AddSugar; AddSugar;
Stir; Stir;

} end;

Obvious? Best? Correct?
Getting the instructions in the right order is can be much harder than it looks. Often
there are good reasons why you prefer a certain sequence. For example how much
effort must you put into checking all the conditions are correct and dealing with rare
situations and where do you detect errors and how will you handle them? You will
shortly get a chance to try this for yourself as you write the Beginner instructions for
making coffee for a bunch of people.

I know there happens to be a very nasty bug lurking around line 5. If you can discover
it for yourself than you're very smart and thinking like a programmer thinks. The
answer is at the end of the chapter.

Does it work? Could it be improved? Often the best way to find out is to trial the
program. Then at some stage 'lets-see-what-happens' becomes 'I-guarantee-so-and-so-
happens' which you do by tests. Trials are experiments where you aim to improve the
way a program works. Tests are exercises to convince everyone the program can be
relied on to 'do what it says on the box' under all conceivable circumstances.

A huge amount of effort goes into getting the right order of instructions and proving
they work. Massive losses (including loss of life) have been incurred by failing to make
the effort.

The flowchart
Some people think in pictures and it is often handy to be able to sketch the possible
paths a program could take using pencil and paper. So the Flowchart was born. It used
to be de rigeur to draw these before putting pencil to coding sheet but nowadays they
are not used so much, partly because modern programming languages lend themselves
to better readability.

Here is the flowchart for making the coffee.

[image]

The diamonds are decisions. The boxes plain actions. There's no place for saying what

Programming Version 0.4 Page 24 of 356

23 See! Due to some peculiarity of the human mind you've already twigged that
COFFEE_FOR_N is a Beginner program.

resources we need and it doesn't show the "kettle coming to the boil" thread. (If it did it
might alert us to that bug I mentioned.) However although it has drawbacks, if you
wanted to explain the logic to somebody the 30 seconds spent on a sketch would be a
good investment.

Confusion be gone!
Before we go any further we better start giving our Beginner programs proper names.
In a minute we'll have multiple coffee making programs and we'll get confused. The
obvious way in Beginner is to give the program a title on the first line. Just so we know
it is a title we won't give it a number and just so the title stands less chance of being
mistaken for something else when we're referring to it we'll write it all in capitals and
not allow spaces but use underscores instead. eg COFFEE_FOR_ONE

Naming conventions like this play a big part in programming. Sometimes they must be
observed and sometimes they are a convenience. In general, programming languages
don't like you using instruction commands (called reserved words) for your own names.
It is fairly common for I and J be used as variable names for counting through loops.
We'll deal with conventions later as we come to them.

Loop
What if you are making coffee for more than one person? The program will go
something like:

1 Note who wants what
2 Boil kettle etc.
3 Make N mugs of black no-sugar
4 Add milk and sugar working down your list of requirements

I'll start you off on COFFEE_FOR_N23 and you can have a go at completing it.

COFFEE_FOR_N
- Instructions for making the coffee for N people
- Coffee options limited to White/Black, Sugar/No-sugar
- Designed for values of N up to a handful
- Not tested for N more than 4
0. With kitchen
0.1 Kettle, water, instant coffee, spoon, milk, sugar, tray
0.2 N mugs
1. With notepad
- to write list of people and preferences
2. Collect orders
. . .

Your task is to complete this program. You can see the sort of detail that's appropriate.
It might help to think of giving instructions to a very dense child. Notice that I've used
a dash to indicate a comment. Useful aren't they!

Programming Version 0.4 Page 25 of 356

The handy outline I gave above that is sort-of instruction is called pseudo-code. It's
often a good place to start. It allows you to develop ideas and get the general picture
without becomming bogged down in detail.

Review
Don't worry if it all looks like a lot of work and you haven't done any 'real' programming
yet. What we've been doing is putting in the foundations and laying the services for a
palace of programming. This isn't grovelling in the mud it's levelling the site.

How did you get on with COFFEE_FOR_N? Now you see why programmers use pencils
- details can be a little tricky. If you're bold you could trial COFFEE_FOR_N which
would be doing it yourself or test it which would be getting somebody else to do it
under your supervision. Probably worth a test if you can persuade somebody to be a
guinea pig. We'll do more on testing in a later chapter.

Iteration and storage
If you were writing COFFEE_FOR_JIM,MARY,JOE_AND_ALICE you could write
instructions like this:
3. Get requirements
- Everybody always has the same thing
3.1 Jim : Black NS
3.2 Mary : White NS
3.3 Joe : White Sugar
3.4 Alice : White 2-spoons

But in COFFEE_FOR_N we don't know who'll be having coffee or even how many. So
we need to have a flexible system. In Beginner this is just a notepad which we add
names to and put requirements against. This might go like:
3 Get requirements
3.1 Find a page of notepad with enough space to list N names and what they

want.
3.2 Divide the page into three columns called NAMES, MILK and SUGAR
3.3 For each person in room do the following
- Note : Don't forget yourself
3.3.1 Ask if they want coffee : If 'No' then skip to next person.
3.3.2 Get name and write in NAME column
3.3.3 Ask how they like it and fill in MILK and SUGAR columns

What we've done is reserved enough storage space to make a note of who wants what
then, one line at a time started filling it up. Now you see why N=1000 might not be a
success as we run out of paper. There are ways round this but for now we'll just put
some arbitrary upper limit on N. In computing terminology a list or table like this is
called an array. We came across one of these in the BASIC program in chapter 2. On
paper the table for COFFEE_FOR_N looks as follows. (I've filled in some of the items
with made-up values.)

Index Name Milk? Sugars Mug

Programming Version 0.4 Page 26 of 356

1 Peter Yes 0 Red

2 Geoffrey Yes 0 Chipped brown

3 Sally No 1 Skinny yellow

4 Adam Yes 2 Green

5

6

What's that Index column doing there? Well it isn't actually a column in its own right
just a counting device so we can say 'row 3' or the '4th Mug'.

Types
Two things plus two things added arithmetically is four things, but one string (that's a
series of characters) plus another string added on the end give one string.

2 + 2 // gives 4
"Great B" + "ritain" // gives "Great Britain"

(// is a common way of indicating that the rest of the line is a comment.)
Now what does 2 + "two" give? An error. We're trying to mix apples and pears.

Binary and all that
As you probably know everything inside a computer is stored as numbers - bits in fact.
A bit can be 0 or 1. To do useful things we usually work with a number of bits together
at a time. Working with 8 (and multiples of 8) at a time is now the established norm. 8
bits together is called a byte. With all 8 possible combinations of 0 and 1 that gives 256
different values a byte can have. The clever part is how we look at these bytes. If all
we ever want to do is count from 0 to 255 we can do this using one byte. Or perhaps we
want to count from -127 ... + 127 which would still fit the limits. We can represent
characters using a numbering scheme. Let's say 65 for A, 65 for B, 66 for C and so on.

But what about numbers like 6 million and ½? What about dates? What about 6 trillion
trillion and 5.543 times 10-12 ? (@@@Later we'll investigate silly utility bills - What is
one third of £10?) Types are discussed more in the glossary. For the time being all you
need to know is as follows.

Integers : Whole numbers used for counting, but only between limits. They come in
various flavours. Typical limits are +/- 32 thousand (16 bits signed) and 2000
million. (4 bytes = 32 bits signed)

Reals or Floating points : Much wider range of possible values for the same number
of bytes but not absolutely precise. All non-counting maths will use floating point
arithmetic. Typical limits are 10-45 to 1038 with 7 significant digits (single precision
using 4 bytes) and 10-324 to 10308 with 15 significant digits (double precision using 8
bytes)

Characters and strings

Programming Version 0.4 Page 27 of 356

24 This will do as a working definition - but there are variations.

25 Supposing the language we were using gave us the option. Some don't, some don't care,
others insist.

26 The computer is also part of the real world. If you know its limits you may be able to head-
off over-optimistic ideas which are doomed to failure such as "the next month's visits for
each salesman can be planned to give the minimum distance to be travelled when each
salesman phones-in to ask for it". See Travelling Salesman¤.

27 What Could Possibly Go Wrong? How about a request for sweetener.

28 Binary Large Objects : Loads of bytes that the programming language doesn't know how
to interpret but need to be kept as a bundle. Digital photographs for example. See
Appendix for more details.

The basic rule is one character per byte.24 Although you can't do maths with strings
you can ask "is 'cat' greater than 'dog' ?" and get a reply based on which comes first
in the dictionary.

Boolean
True or false.

Other built-in types vary considerably between languages. For example some may
have types specially suited to currency calculations or dates and times or just a
limited set of values or blobs. (@@@See the appendix for more on blobs and lots
more on built-in types.)

User defined types in various guises are really handy. For example in
COFFEE_FOR_N we might have a type that combines Name,Milk,Sugars and Mug
in one handy package. We will be investigating this at length in later chapters.

So if we were putting COFFEE_FOR_N onto a computer what types would we use for
our table of requirements?.25 Name looks like a string. Some languages might ask us to
say the maximum length we will ever need. Milk looks like a boolean (either we have
milk or not).

How does the real world work?
What about the Sugars? Will we always be asked for whole numbers of sugars? This is
an extremely important issue which as a programmer you will encounter every day in
one form or another. Your job is to model the way the real world works using a
computer as efficiently as is reasonably possible. Just because my sample data set
doesn't contain 'and a bit' doesn't mean when the program is released into the real
world that somebody won't ask for 'a bit'.

Being able to see in your mind's-eye what might possibly happen when the program is
used for real is an essential programming skill.26

So let's make Sugars a single precision floating point number.27

Mug looks like another string, but if we had pictures could we use them? Possibly, if
the language we were using supported blobs28. A picture would take up a larger area of

Programming Version 0.4 Page 28 of 356

29 In olden days possibly only integers allowed!

the notepad, would take longer to draw originally but might have other advantages.

Arrays
An array is a sequence of slots put aside for storing information. The process of
allocating the necessary space for the job is called dimensioning an array. Often arrays
are of a fixed size, which as we have been discussing recently, is a limit which we need
to consider given the likely maximum ever number of slots required. (There are
alternatives which have adjustable sizes - we'll look at them in a later chapter.)

Here are some dimensioning examples in real programming languages.

BASIC DIM $NAME(6),MILK(6) $ in front of a name indicates a
string. Otherwise a number29.

Delphi var
 name : array[0..5] of string;
 milk : array[0..5] of boolean;

Delphi gives you the choice of
lower and upper limits.

Java String[] name;
Boolean[] milk;

Java @@@

PHP name = array();
milk = array();

PHP's arrays are very laid-back
new-age sorts of things. We
can put as much of anything
we like in them.

Normally we index array elements with an integer. Here are some examples in real
programming languages.

BASIC $NAME(3) This would be 'Sally' using our
sample data set.

Delphi name[2] Also 'Sally'

Java name[2] Also 'Sally'

PHP milk('Sally') Some languages are not limited to
integer indices.

More points about arrays:
• Typically you can have more than one dimension. For example DIM $DAY(12,31)

allocates 12 lots of 31 slots.
• Plenty of languages don't have arrays at all
• If there are say 6 items in an array that starts at index zero you can only go up to 5.
• A common error message is Subscript out of range. This means "you have tried to access

an array element using an index less than the minimum or more than the
maximum. This is probably the most common 'unexpected' run-time error.

• Arrays (and their cousins, lists) are used all the time.
• How do you know if an array element contains something valid or not? Some

languages always fill a newly dimensioned array with 0 or '' or false or something

Programming Version 0.4 Page 29 of 356

30 You should be comfortable with Foo by now : Foo = something the same way that
Widgets are bits in a factory. Don't try to use Foo outside a programming context -
everyone will think you are mad.

31 Notice the nested brackets. Remind you of blocks of code? Thank goodness the English
language hasn't been perverted by programmers, but from time to time it is really handy to
use a coding paradigm.

32 Either very very small or, by Sod's law some effect conspires to arrange the data in just the
way you don't want. Random data is almost unheard of.

33 Cost is an abstract concept discussed in the Algorithms appendix.

depending on the type of the array, but others don't.

Another coffee...
It's a while since COFFEE_FOR_N. When we left it we'd established a table of what
people wanted. What was left unspoken (but you can't leave things unspoken when
you're talking to a computer) was the number of people having coffee. When we get to
the kitchen we will need to know this number for getting enough cups and putting
enough water into the kettle. How can we tell?

One way is to make an explicit count. 1..2..3..4. Another way is to count the number of
entries in the list. OK then, what's the number of items in my sample data set table: 4
or 6? There are 6 rows but only 4 have been filled in. As humans we can tell instantly
that a blank row is to be ignored but a computer can't. Even if a computer finds a blank
line and it thinks Oh dear something wrong with this line - ignore it does that signal the end of the list
or perhaps just a missed out or scrubbed-out line? You tell it!

...another essential programming skill
Let's cover that last bit again. You have to instruct the computer to do something so-
many times to such-and-such a collection of data.

In this simple case you could have made a separate note of 'how many' then 'starting
from the top for N times do foo' or 'work through the list and for those that make sense
do foo'.30 The first method is explicit the second is empirical. (Empirical means "based
on practical experience" (as opposed to logically correct))31. There may not be a 'right
answer'. The second option looks more reliable: Somebody may have changed their
mind and not wanted coffee after all so the list has say three names on it but the
second is crossed through. But what if your empirical method is 'keep on down page
until you get to the end of the list' but the list is hundreds (just in case) of (empty) lines
long? You'll be there all night!

I hope you can see why good programmers are rare. They have this sort of dilemma all
the time. For example a method exists that will normally sort a list very quickly, but
once in a blue moon the method will take much much longer. What are the chances of
that happening?32 A programmer needs to be able to spot strong and weak ways to
describe the information that's available... ...and also the relative cost33 of using those
methods.

Belt and braces
Why not use both the explicit count and the 'step though until no more' methods? That

Programming Version 0.4 Page 30 of 356

way if there's a discrepancy then an alarm bell will ring. That's exactly what good
programmers do.
• Looking for discrepancies is second nature to programmers.
• Validation is the term used to ensure that data is sensible.
• Assertion is a technique that says "at such and such a point in the program the

following condition should always apply".
(Actually validation and assertion are siblings rather than examples of belt-and-braces,
but for now I want to emphasise that programmers are always on the lookout for ways
to ensure rubbish is rejected before it can pollute the rest of the program.)

Here is one way we might implement belt-and-braces in COFFEE_FOR_N.

5. Line up N mugs
. . .
8. For each item in list pour in the hot water
9. All mugs should now be full
9.1 If not then something has gone wrong
9.2 Find out why there is a discrepancy.

Coffee-making review
Did you use a tray to carry the mugs to your guests? If not how did you carry them?
• FX: Sound of extra instructions being added.
• Think bubble : Perhaps I should have done some testing.
If you used a tray did you measure the maximum number of mugs it could hold and feed
back some limits to the design of the program? Or perhaps made the program more
complex with a "...then make a trip back with those and come back for more"
instruction.

This sort of issue is meat and drink to a programmer. There is always some wrinkle
you've overlooked. You often spend more time heading-off or dealing with the things
that can go wrong rather than the mainstream events.

Did you spot that serious bug in COFFEE_FOR_ONE?
5. Wait until kettle boils
What happens if the kettle is switched on but not plugged in. How long will you wait?
A computer would wait forever! This is a subject we will return to in a later chapter.

As you can see there are plenty of traps and no single right answers.

Programming Version 0.4 Page 31 of 356

34 eg HTML, SQL

35 What Could Possibly Go Wrong? The phrase on the lips of every real Programmer all day
long.

36 One reason for eschewing GOTO is that it resulted in spaghetti code with jumps going in
all directions and with no clear indication where they were arriving. You could be at the
top of a loop and not know it until you reached the bottom umpteen pages later on in the
printed listing.

4. Control structures

We have briefly seen IF...THEN...ELSE and FOR loops. As switching the flow of control
around a computer program is essential technique we'll nail these and their cousins
down before going further.

Some languages34 don't have flow of control switching.

Precise syntax varies between languages; The objective here is to let you immediately
recognise what you see when looking at a program and think about choosing the most
convenient for your own.

Plain jump - Go to
Some of the code I've shown you has used GOTO 60 etc. That was easy to understand.
WCPGW?35 You lose track of how your code works. Many languages don't even have a
jump instruction and with modern high-level languages you should never need it. It is
great for two things:

1 quick and dirty instructional purposes
2 instructions for humans. eg. procedure manuals

But that's all. Don't use it in your programs unless you're working at a very low level or
with a language without any other ways of redirecting the flow of program execution.36

Testing conditions
We make decisions based on tests. For example:

0. Look outside and note weather
1. If raining then take umbrella

or
if (tray_size < number_of_mugs){
 ... work out a way to carry more ...
}

or
while (tray_size < mugs_on_tray){ // If there's a space
 AddMugToTray(); // put next mug onto tray
 if(not AnymoreMugsToTake()) break; // loop unless no more to do
}

Don't worry about the empty brackets at the end of AddMugToTray() for the moment.

Relations

Programming Version 0.4 Page 32 of 356

The basic tests commonly found in programming are:
Relation Typical symbols

• Equals = or ==
• Not equals != or <>
• Greater than >
• Less than <
• Greater or equal >=
• Less or equal <=
(Equals gets a whole section to itself in a minute.)

The symbols shown are called relational operators. Look up relational operators in the
documentation for a programming language to get the details.

Normally these relational operators work with strings as well as numbers. Quite likely
they will work with other types and sometimes you'll be able to mix types and others
either be prevented by the interpreter or on the road to some strange and unpredictable
results.

Not and other booleanisms
Tests can usually be 'reversed' by putting a not or ! before it.

Tests can usually be combined using boolean operators and and or. Sometimes && is
used for and and || for or.

Compare this loop with the previous example
while((tray_size < mugs_on_tray) and (AnyMoreMugsToTake())){
 AddMugToTray();
}
That's a bit easier to understand. Tip: It may not be strictly necessary, but putting
brackets round multiple combined conditions can save a lot of head scratching. This is
because of operator precedence. (In any expression the interpreter will scan for some
sorts of operator (+,-,>,! etc are operators) to work with before others. If you put in
brackets you can be sure that the sub-clauses are not jumbled up.

Functions
Functions can appear anywhere and are the core of many modern languages. Let's
introduce them quickly here.

A function is a block of code with a name. Here is an example:

function LargestOfTwo(foo,bar){
// This function returns the larger of two arguments
 if(foo >= bar) return foo else return bar;
}

foo and bar here are called arguments or parameters - terms we'll be using a lot trom
now on. You know what foo is - anything, it's a place marker. bar is another
metasyntactic¤ variable. We could have used Fred and Charlie or a and b or n1 and
n2...

...but then we'd have to substitute in the body of the function as well. In fact foo, bar,
baz and any other local are never used like this - metasyntactic variables are always for

Programming Version 0.4 Page 33 of 356

37 There are lots of loose ends in this example - we'll ignore them for now and press on

human consumption.

Often functions return a value. Sometimes that's the whole purpose of the function, and
other times all you want is a "Yes-OK I did what you wanted and it seemed to go OK"
like this:37

function SwitchKettleOn(){
// Operates kettle switch, returns true if neon lights up
 KettleSwitch = 1; // 1=on 0=off
 if(KettleNeon==1)return true else return false;
}

Note how there's always a comment to tell us what the function does. Tip: No matter
how simple the function is always put a comment in.

So how might we actually use the LargestOfTwo function? You can think of it as a
black box, which spits out a result when we feed it with two numbers.
10 input "Please type three numbers";a,b,c
20 largestab = LargestOfTwo(a,b)
30 largestabc = LargestOfTwo(largestab,c)
40 print "The biggest number is "; largestabc

Setting up a function for later use is called function definition. Actually using it is
calling a function.

So why are we looking at functions now? For two reasons:
• You often find them as part of tests
• Can you see that the flow of control suddenly jumps from the main program, gets

buried in the function then resurfaces back in the main program.

Equals
What could be simpler and less prone to errors and programming mistakes that testing
if two things are equal? Just about anything! This section is a catalogue of traps.

The missing =
Some languages allow you to test equality with if(a = b)... others insist on if(
a==b)... to test for equality but let you use a single = to mean set a equal to b and
have this inside a condition. Here is an example of what can go wrong:

A = 99;
if(A=1){print("This should never happen but it does");}

Here's how the computer thinks: Set variable A to value 99. Do the bit in brackets first...Set variable A to value

1...Now I need the result of what I just did for the IF...last result was 1 and by my rules of logic 1 is true so do the code block...
Ouch! It might seem weird that A=1 has a 'result' of 1 but that's how many languages
work. This is a bigger trap because with some languages = is used quite happily like
this so if you mix languages you're more at risk. Tip: One way to reduce the risk is to try
to put constant bits of tests at the front. if(1=A){... will upset the interpreter as it will
know that it can't assign A to 1. Another way is to get into the habit of always using
== for equality wherever you are and let those languages that only use a single = tell
you it's unnecessary.

Rounding errors

Programming Version 0.4 Page 34 of 356

38 Research "Salami Slicing" for more details.@@@

Here is another trap:
10 INPUT "Input money in pounds and pence";Total
20 INPUT "How many people to share £";Total;" between";People
30 EachGets = Total / People
40 AmountLeft = Total
50 REM Now repeatedly subtract each person's bit
60 IF AmountLeft = 0 then STOP
70 AmountLeft = AmountLeft - EachGets
80 PRINT "Pay out £";EachGets;" Amount left is ";AmountLeft
90 GOTO 60
What could possibly go wrong with line 60? If we subtract three thirds or four quarters
or n nths we must end up with zero so the program will finish correctly. Bzzzt, wrong!

Let's see what happens with £10.00 and three people.
(30)EachGets ...£3.33 (40)AmountLeft=£10.00 (50)Remark ignored (60) AmountLeft is £10.00 which isn't 0 so continue
(70)AmountLeft = £10.00 - £3.33 which is £6.67 (80) Print etc. (90) Jump (60) AmountLeft is £6.67 which isn't 0 so continue
(70)AmountLeft = £6.67 - £3.33 which is £3.34 (80) Print etc. (90) Jump (60) AmountLeft is £3.34 which isn't 0 so continue
(70)AmountLeft = £3.34 - £3.33 which is £0.01 (80) Print etc. (90) Jump (60) AmountLeft is £0.01 which isn't 0 so continue
(70)AmountLeft = £0.01 - £3.33 which is £-3.32 (80) Print etc. (90) Jump (60) AmountLeft is £-3.32 which isn't 0 so continue
(70)AmountLeft = £-3.32 - £3.33 which is £-6.65 (80) Print etc. (90) Jump(and so on for ever)

But you say that only went wrong because of the rounding error caused by not taking
the fractions of a penny into account. OK then (as if you can pay somebody .333 of a
penny) how many decimal places do you want to go to?

There's worse news : You may have tested this with £33 and 3 people £10000 and 10
people and it worked every time. It might just be a few pathological values that you
don't know about which trigger the error months later just when you don't want a phone
call in the middle of your holidays. Rounding errors are inherent in floating point
operations you might even find that 12.234678 times 54.321 is not exactly equal to
54.321 times 12.345678.

Good news:
• Integers don't have these problems.
• You can test for >= or <= to be on the safe side
• You can make money from rounding errors38

In practice computer programmers stick to integers where possible and are aware of
potential pathological cases with floating point numbers.

Equals what?
We are jumping ahead a lot here and may end in deep water. If I ask you "Do you have
the same car as Charlie" what exactly do I mean? Do I mean

a the same make/model/colour
or b own the same bit of metal
(If I'd asked "do you have the same dentist" then option b isn't so odd.)

In computing we sometimes meet the same thing because we give labels to things and
use those labels as if they were the actual things. In our street Mr Jones lives at No.1
His neighbour is called Doris. (Doris lives at No.2) I live at No.3 and have a neighbour I
call Mrs Green. You've already guessed that "Doris" and "Mrs Green" are one and the
same person, but suppose I met Mr. Jones somewhere one day and he referred to "Doris"
I might not know who he was talking about because I'm not on first name terms with
her. Or he might say to me "your neighbour" which makes me think of the chap who

Programming Version 0.4 Page 35 of 356

39 Adapted from a working version for clarity of explanation

lives at No.4! If there are 4 houses in our row of cottages there are 4 people and 6
neighbours - some duplication.

If I give you a photocopy of a document then that's the same document (equal in
content) but also a different document (separate piece of paper). This is always leading
to confusion.

Jumping around
This chapter is called Control structures but where are all the structures? Here they
come. These are standard patterns of flow control.

Call and return - Sub-routines and functions
We were just talking about functions. Using a function is called calling it. When the
function finishes it returns to the place where it was called from to continue.

Here is a BASIC program39

10 FUNCTION DoubleIt (N)
11 DoubleIt = N + N
12 END FUNCTION
20 A = 7
30 FOR i = 1 TO 5
40 A = DoubleIt(A)
50 PRINT i, A
60 NEXT i

Lines 10,11 and 12 declare a block of code
named DoubleIt which takes a single argument.
(Calling it N might give us a clue it is a number
- later we'll look at arguments in more detail.)
10,11 and 12 are not executed at this stage, just
put by ready to be used later.

Line 40, executed 5 times in the loop, calls
DoubleIt. As a result A becomes 14 then 28
then 56 and so on.

Here is how the computer operates : (10) A function definition for future reference. I'll just make a note of the
name and how many arguments it needs. (11) Aha! This is how the function will be calculating its result - Just add the argument
(whatever that is) to itself. (12) End of the DoubleIt definition. (20) Set a variable location up for a number and label it A. (30)
Loop using a variable called i as a counter starting at 1 and stopping after 5 (40) Set A to ... DoubleIt? I don't recognise that
word as part of my language - Oh it's a user-defined function...Here it is, it needs a number before I can launch it...And here is
the number to use in the brackets. MAKE A NOTE to come back here when I've finished messing about with the function.

(10) One number required - I have just got one number. (11) Add the number to itself ... as this is the result I'll get ready
to hand it back to the calling program.

(still line 40) and the result from the function is ... a number I can use to store in A
(50) Print etc. and so on round the loop 5 times.

Basic things you need to know about functions. (We will expand these points in a later
chapter)
• They are everywhere
• Sometimes they are called procedures and methods. In olden days they were called

sub-routines.
• You may come across things called 'macros' - a wooly term pretty much deprecated

by programmers. If they have names like functions and take arguments like
functions then that's what they are.

• A function might do things rather than be expected to give a result.
• Variables inside functions (N in the example above) are normally separate from

those in the main program. That is say N in a function is nothing to do with N in a
main program.

• Normally the number and type of arguments supplied must match the definition.

Programming Version 0.4 Page 36 of 356

40 Obviously not as compact as it was when you first got it. Have you noticed that
manufacturers give erection instructions for tents etc but rarely how to fold back into the
carrying bag.

41 Many but not all computer languages work like this. It is too soon to discuss alternatives.

Using functions is de rigeur
You can have a function call another function and another etc. You can even have a
function call itself! In fact this is how many programs work. It is natural to think of
programs running 'down the page' in one long stream of computer consciousness. This
was found to be a Bad Thing because the code became unreadable with a FOR I = A
TO B on page 1 of the code and 400 lines later the matching NEXT I. This caused all
sorts of problems. You don't have just one bone in your body but lots all shaped for the
particular job they have to do - The same goes for programs. That's how programmers
think.

Review
I never knew there was so much in this topic myself until I started unpacking it to write
about it. Another way of looking at this is for you to appreciate that it is like a tent
which will fold away into a compact packet of knowledge.40

• You can jump using GOTO - but don't
• In order to test things you can compare them using relational operators - but

beware of 'equals'
• Once you can test things you can switch program control programatically
• Functions are programming in depth rather than length. The main program passes

data to the sub-program, hands over control to the sub-program, then eventually the
sub program hands back a result to the main program which can now continue.

This chapter has been rather technical - that's because what we're discussing is the
techniques used to structure computer languages.41

Programming Version 0.4 Page 37 of 356

If - Then - Else
We've done some of this already. Each language has a slightly different syntax so you'll
need to look up the documentation. The important things to remember are:
• the else will be optional
• a program with large numbers of if-then-elses might need a re-design. (More in a

later chapter.@@@)
• then and else normally precede a block of code. Some languages make it easy for

you to mistakenly apply the then to just the rest of the line when you meant to have
a few lines taken together.

Computed loop
You have seen a few examples of loops in BASIC which uses FOR...NEXT.
10 FOR SUIT = 1 to 4
20 FOR CARD = 1 to 13
30 ...foo...
80 NEXT CARD
90 NEXT SUIT

• SUIT and CARD are loop counters.
• 1 and 1 are initial conditions.
• 4 and 13 are terminating conditions
• Blocks nest (as you know blocks always do)

We've assumed that we want to add 1 to each counter. While that's exceedingly
common we might prefer to count down or in odd steps.

What if we want to do the sort of loop that we use in real life to deal cards: "Keep
dealing the cards until none are left"? Now we need to test something other than the
loop counter.

while (AnyCardsLeft()){
 DealTopCard();
}

•There is no loop counter
•Test is at the top of the loop

Having the test at the top of the loop means we might never execute the loop if the
condition isn't true at the first entrance. Sometimes we always want to execute the
loop at least once.

repeat {
 PutNextArticleInBag();
} until (BagIsFull());

When packing groceries we might not
have a bag until we realise at the
PutArticleInBag stage we need one. So
the test only makes sense after the block.

Some languages use keywords like D0...WHILE, REPEAT...UNTIL and similar to
implement these variations. Others stick to a multi-purpose FOR which works as
follows:

for (initialise ; test ; update) { body }
Initialise always runs once. Normally it just sets a loop counter to a handy initial value.
Test checks to see if the loop should continue or quit before each circuit.
Update is run at the end of each loop circuit to do anything that needs to be done before
the next circuit.

This is how a Java programmer would write the nested loops at the start of this section.

Programming Version 0.4 Page 38 of 356

42 We will distinguish between arrays and lists in the next chapter. For now just think of an
array with all elements used.

for (int suit=0 ; suit < 4 ; suit++){
 for (int card=0; card < 13; card++){
 ...foo...
 }
}

• suit and card are defined as
integers and start at 0
• ++ is Java (and some other
languages) for 'add 1'.

The first line reads: Initialise the loop with a new variable called suit which will be type of integer. For the first and all

subsequent times do the block of code in the loop if suit is less than 4. At the end of each loop add 1 to suit (the loop counter).

Our hypothetical Java programmer didn't have to start at 0 and test for 'less than 4' but
as I've said, programmers tend to start counting at 0 and feel happier using < or > than =
or ==. Here are some variations (Again in Java.)

for (; Shepherds==WatchingSheep ;){
 MonitorFlock();
}

We don't need to be
counting.

for (OpenConnection() ; ConnectionIsAlive() ;){
 UseConnection();
}

We can do complex
initialisation

A common use of a loop is to step through the items in an array or list42. For zero-based
lists (and arrays) the first element has index 0 and the last element will be indexed by
the number of items in the list minus one. So you will often see code that looks
something like

for i := 0 to count(TheList)-1 ... // *don't forget the -1*

Switch - Case
Sometimes we want to take one of a number of actions depending on a test. Many
languages provide a compact way to do it. The two commonest patterns used are
SWITCH ... CASE and CASE ... OF.

Here is an example in Delphi (Pascal). Notice how Square and Rectangle both lead to
the same result.
case Shape of
 Square, Rectangle : AreaText := 'Base times height';
 Triangle : AreaText := 'Half base times height';
 Circle : AreaText := 'Pi times radius squared';
else
 AreaText := 'No method defined';
end;

The same task in PHP
switch ($shape) {
 case SQUARE :
 case RECTANGLE : $areaText = 'Base times height'; break;
 case TRIANGLE : $areaText = 'Half base times height'; break;
 case CIRCLE : $areaText = 'Pi times radius squared'; break;
 default : $areaText = 'No method defined';
}

Programming Version 0.4 Page 39 of 356

43 On of my customers still uses a large program I wrote 15 years ago. Apart from the people
it is the oldest thing in their office.

44 There are still holy wars about exactly how to indent and match the beginning and end
markers. Stick to one method.

Switch in many languages contains a very nasty trap. If we left out the break
statement in the PHP example control would drop down to the next line (and so on).
For example a triangle would Set $areaText to 'Half base times height' then set $areaText to 'Pi times radius
squared'

which is not what we want. This is such a troublesome trap that some programmers
start by writing out the skeleton with breaks before doing anything else. It also means
you must test every choice.

Sideline - Style
In the olden days having lowercase was a luxury - if available at all. Literally you could
be limited to 0..9,A..Z, and a few special characters. No lowercase, no curly brackets.
We were poor but we were happy. Then along came visual displays and matrix printers
and the fun could start as different schools of programmers evolved convenient
conventions for coding styles. Each felt theirs was 'The One True Style' which lead to
religious wars.

As humans we're very good at spotting patterns and assigning characteristics to them.
This makes looking at screens and screens of code a lot easier if there is some
consistent guide to what's what. When using Beginner I didn't have to explain that
6.1.1 was a sub section of 6.1 which in turn was a sub section of 6. as the convention is
universally understood. Since you need to be able to come back to your code in a year
or a decade's time43 you ought to make it easy to read. (Better still, do you really want
to be messing about with 'that old stuff' in 5 years time? - Pass it on to some junior
programmer with a nonchalant "the code is well documented" and get on with exciting
new stuff.)

We have already come across some common style conventions that make code easier to
understand.
• Indenting blocks of code44

• Using i or I (and to some extent j/J) as integer loop counters
• Using 'foo' for 'anything in explanations

Here is a selection of stylistic conveniences which you may see and possibly feel useful.
Obviously it will be handy to aim to follow the style adopted by others using the same
language if there is a distinctive set of unwritten rules.

Case
• Some languages are case sensitive others aren't.
• Some are pretty strict about the various uses of case.
• Mostly key words can be upper or lower or mixed case. FoR, seLEct, Mixing

<H2>...</h2>, and FUNction are likely to be acceptable.
Naming conventions
ALLUPPERCASE tends to get reserved for constants. (Constants are variables that don't
change.)

Programming Version 0.4 Page 40 of 356

45 If you have to ask what a system level API is you don't need to know. We'll cover it in due
course.

46 The setBalance function would have been defined for type Account. In other words any
variable of type Account 'knows' how to set it's balance. More in later chapters.

There is a style of variable naming that you either love or hate. You give variable
names a prefix according to their type. For example szName would immediately
indicate the variable was a zero-terminated-string. (See next chapter.@@@Appx?)
This style of usage tends to be favoured more by those who program in C and use
system-level APIs.45

Java, with it's quite definite naming scheme for classes and methods (just think 'type'
and 'function' for now) has had quite an influence in a wider sphere. For example in
Java you give a class an upper case letter to start with and methods start with a
lowercase letter and end with brackets whether they have any arguments or not.
Something that starts lowercase without brackets at the end will be a variable. Here is
a Java snippet:

Account account = new Account(1234567,'Jim Smith');
account.setBalance(123.45);

This reads as : account is a variable of type Account. Create it using 1234567 as the account number argument and Jim
Smith as the name argument. With the account variable do the function setBalance46 using 123.45 as the money argument.

Notice how, because spaces are generally not allowed in names we find alternatives.
One which we've used in the naming of Beginner programs is to replace space by an
underscore. Another is to lose the spaces and capitalise the first letter of each word.
(thisIsHowYouDoIt.)

It is a good idea to give functions names with the action bit at the front - getBalance()
rather than balanceGet(),

To conclude this excursion into coding style:
• Some rules is rules - and some aint!
• All aids to communication should be used
• Try to keep to a standard - Find out what the 'local' ones are.
• Look up the manual for specific languages for different styles of comments. Many

languages have a program that can look at your code and produce documentation
based on the program part and your strategically placed comments.

Other ways program flow is switched
We are getting a bit ahead of ourselves here but never mind; we'll deal with them
properly later.

Error handling
Let us suppose that your program needs to be connected to the Internet but the
connection drops. Deep in the guts of your computer an alarm bell will ring - how does
your program handle this kick-in-the-teeth? Nicely we hope - or at least safely. It is
considered very bad form to let the unexpected or the rare-put-possible untoward event
to crash your program or cause the computer to lock-up. So you tell the part of the
program you want to protect how to catch errors. You may not know precisely where
they come from and the errors themselves may happen (be 'thrown') at any time. It's a

Programming Version 0.4 Page 41 of 356

47 There are some interrupts you can't ignore - Non-Maskable is the technical term. Hungry
cats for starters!

bit like having a safety net - you're not expecting tightrope walkers to fall off - and you'll
catch them falling at any time. So the jump out of the normal course is unpredictable,
unplanned - but insured against.

Polling and interrupts
When you keep trying to phone somebody but they never seem to be at home - that's
polling.

When somebody phones you - that's an interrupt.

Polling means you have to keep testing - which might mean you can't be doing other
things because you're too busy testing. On the other hand you can be getting on with
something useful until interrupted by the phone ringing. In computer terms this means
that continually polling can lock up a computer, so it is really handy if you can arrange
to press ahead but catch (the same as for errors) interrupts. All the same things apply
but this time you might say "I'll just finish so and so before dealing with that interrupt"47

Review
Repetition can depend on simple counting or testing.

Testing needs to be done at the right place, and fail-safe.

Depending on some condition do this or that will use if...then...else. When you have a
number of options to chose from you can use select or case to switch between them.

Sub-routines (functions, methods, procedures are all names for the same thing) are
planned diversions from linear flow. They allow you to break up a program into
manageable pieces that can be developed and tested independently and then
assembled.

If you've done a bit of programming before this chapter will have been a breeze. These
basics are important because being fluent in fundamentals means you can apply your
brains to the more challenging stuff.

Programming Version 0.4 Page 42 of 356

48 It is relative : My first program took 3 weeks to get returned from the data centre.

5. First steps in coding
You have already put you hands on a keyboard to write Hello World in HTML. Some
would say that HTML isn't a 'proper' programming language and they do have a point,
but as we'll see down the road, web pages are a patchwork of HTML stitched together
and overlaid with 'real' programming.

In this chapter we'll start you off on your chosen programming languages 'YCPL' just so
you become familiar with how to bridge the gap between "I want to do foo" to seeing a
result on the screen.

In later chapters we'll return to the thoughtful bit of programming - Then you'll be able
to try out concepts we've discussed using the skills learnt in this chapter.

Development environment
Here's how programming works
PROGRAMMING_OVERALL_METHOD
1. Idea
2. Research and design
3. Write the code
4. Run the code
4.1 Get the code to compile and without the computer complaining
4.2 Put the program to work
5. Repeat 3 and 4 until results are satisfactory

When you wrote Hello World in HTML you used a text editor for stage 3 and a web
browser for stage 4. Luckily all the knowing how to run HTML is contained in your
browser 'for free' so to speak. With other programming languages you'll need to be
telling the computer how to interpret your code. Also there are programmer
productivity aids to make editing code easier. Many of these are personal choice and I
expect you to experiment a bit before finding the one that suits you and your pocket.
An Integrated Development Environment or IDE is a sort of programmer's workbench
where your reference books, bits of work in progress, tools, test instruments and notes
can be kept in one place. As you know, having the things you use all the time ready to
hand is a great benefit to getting a job done quickly and efficiently. As you mature so
will your workbench.

How to get started?
Good question. Whatever programming language you intend to get stuck into will
require you to set up some way of at the very least passing some code to a program that
does something with it. Unless you've already got this installed and working this is
going to take an hour out of your life.48

Programming Version 0.4 Page 43 of 356

49 I recently tried to install 3 IDEs and 4 frameworks (See glossary or wait until later) with
28% success rate after a lot of trying. Now if somebody with my experience has these
problems it doesn't bode well for beginners.

The ultimate objective is to be able to
run a program that displays the magic
words "Hello World". I only wish I could
be more helpful but like modern
furniture it needs a lot of self assembly -
and far too often there are bits
missing.49 For starters you don't need
all the development tools a professional would use so try to keep things as simple as
possible.

There is a cheat which is available to most people without any downloading of IDEs
and so on if all you want to do is follow the examples in this section: See the Appendix
- How to code with Javascript.

HW_IN_CODE_1
----- Install and run programming language -----
0. With your chosen language
1. Install necessary bits
- Details vary from language to language and also IDE to IDE
- Don't forget the manual
2. Write a program to display "Hello World"
2.1 Read the manual for instruction - It should have it in there
2.2 Run to get a result
2.3 Save the program
2.3.1 You probably want to create a special directory to play in
2.3.2 And implement a logical naming scheme
3. Relax and celebrate : That's the tricky bit over.

2.3 is interesting. Firstly some programming languages require you to put certain files
in certain places. After a while you should be thinking of adapting the configuration to
allow you to have a number of project zones. Secondly some will expect you to observe
file naming conventions. It's a really good idea to give your programs names that will
let you retrieve them later. Whatever you do, don't use spaces in file names.

HW_IN_CODE_2
----- Make sure you can use numbers -----
0. With the Hello World program you created in HW_IN_CODE_1
0.1 Make sure you can load it from file
1. Alter the code to display the results of 1.1+2.2+3.3

What programming languages is the best?
or What programming language should I
use? Sorry, I have no more idea than what
you should wear this evening or where you
should go on holiday. Have a look at the
appendix on languages.

Programming Version 0.4 Page 44 of 356

1.1 Something like sum = 1.1+2.2+3.3
1.2 So the full result is "Hello 6.6 World"
2. Save the program under another name
3. Make sure you can still run your first program.

In 1.2 I've set you a tricky task: To mingle numbers with strings. If it isn't 'obvious' then
you need to find a way to convert a number to a string. Some languages are very
forgiving, other strict.

HW_IN_CODE_3
---- Using the documentation ----
0. With the original HW program
1. Alter the result to : "Hello World", then on the next line "The time is "

followed by the current time.
1.1 How to start a new line?
1.2 How to find the current time?
1.3 How to format 1.2 in 'hh:mm' style?
- From now on I'll assume you'll manage your program files
- without specific instructions

If you found the HW_IN_CODE series a struggle - do not worry. You've learnt a lot of
important matters on the way and they won't be troubling you again. Take it from me
that it is only the unfamiliarity of the task that makes it a struggle and in a day's time
you'll scoff at the simplicity of it all.

GOODBYE_COMPUTER
---- There are other things in life ----
0. With computer
1. Switch off
2. Quickly scan the next paragraph
- Go and chill-out with a glass of your favourite tipple

In the rest of this chapter we'll be doing simple programming exercises. They are
carefully in sequence and you should do them all. The objective is to get you familiar
with your programming environment and introduce you to some of the intellectual and
practical skills that programmers use every day.

5.1 Average
This exercise is an opportunity to use arrays, integers and floating point numbers.
Finally we look at how to find a maximum and minimum of a list.

EX_5.1_BY_HAND
0. With pencil and paper
1. Write down a handful of integer numbers in a list
2. Count number in list
3. Add up numbers in list

Programming Version 0.4 Page 45 of 356

4. Divide sum by count to get average
5. Report result

How are we going to convert that to a computer program?
• You already know about arrays - They need to be defined, filled and indexed
• You already know how to browse the manual

I have written some programs as illustrations.
• You will need to adapt for your particular system. All these programs have been

tested but don't be surprised if you get error messages when you try to run them.
the reason for giving you these listings is so you can understand the underlying
structure and possibly pick up the coding style appropriate for your chosen
language.

• Notice how the variable used to add up the total is explicitly set to zero. Often you
can expect this to be done for you - but experience shows it is always best to do it
yourself.

• Different styles of names have been used for example sum and SUM, there is no real
significance in this.

BASIC

10 REM Prepare array with any old data
20 COUNT = 8
30 DIM A(8)
40 FOR I = 1 to 8
50 A(I) = I
51 REM BASIC is unusual in using round brackets for arrays
60 NEXT I
70 REM Array is now ready for use
80 SUM = 0
90 FOR I = 1 TO COUNT
100 SUM = SUM + A(I)
110 NEXT I
120 AVERAGE = SUM / COUNT
130 PRINT "Sum ";SUM; " Count "; COUNT; " Average ";AVERAGE

Delphi/Pascal

function ComputeAverage:single;
{ returns a single precision average of the first 8 counting numbers }
const
 COUNT = 8; // Constants often capitalised as a matter of *style*
var
 a : array[1..COUNT] of integer; // all variables must be declared
 i, sum : integer; // before being used
begin
 // Initialise
 for i := 1 to count do a[i] := i;
 sum := 0;
 // total
 for i := 1 to COUNT do sum := sum + a[i];
 // result
 result := sum / COUNT;
end;
• Display results in a string format using something like format('%3.3f',[av]);

Programming Version 0.4 Page 46 of 356

• Check sum / COUNT works correctly. Delphi can be snotty about dividing with
integers. (It won't! - Look up typecasting.@@@)

• { ... } can be used in Delphi as comments. In all other programming languages
known to man { ... } are vital program block delimiters.

• Delphi requires all variables to be specified before the code can begin.

PHP

/* Initialise array */
$a = array(1, 3, 66, 7.2, -5.55, 8, 9, 10, 11);
$count = count($a); // count is a built-in PHP function
$sum = 0;
// do the totalling ...
foreach($a as $n){ // foreach is part of PHP
 $sum += $n;
}
$average = $sum / $count;
print(" $count items in array total $sum. Average is $average");

• /* ...*/ are commonly used to indicate comments
• All variables in PHP start with $
• We've initialised the array as the same time we dimensioned it.
• PHP is very laid back about what we put in arrays - we can mix and match types to

our heart's content.
• Notice that we have found out how big the array is
• foreach is a very useful enumerator. (More on enumerators in a later chapter.@@@)

It says let's call each element $n and hand that to the following block - and repeat for all elements.
• += is a shorthand for foo = foo + bar that is quite common in programming

languages.
• PHP is laid-back about printing - but notice the double quotes.

Javascript

// ----- fill array with any old data -----
COUNT = 8
a = new Array(COUNT)
for (i=0;i<COUNT;i++){ // js arrays start at 0
 a[i] = i + 1 // when i=0 1st element value is 1
}
sum = 0

// ----- step through array adding up -----
for (i=0;i<COUNT;i++){
 sum = sum + a[i]
}

// ----- results -----
average = sum / COUNT
document.write("
Average of " +
COUNT + " items is " + average)

• Trap: Javascript statements don't
end with ;
• In the last line the .write()

Use of objects and methods in a nutshell
Susan = new Person(24,Blue,Blonde)
Terry = new Person(26,Brown,Black)
Susan.getAge() gives 24
Terry.getEyeColour() gives Brown
Susan.setSpouse(Terry) marries them
Terry.isMarriedTo(Susan) gives true

Programming Version 0.4 Page 47 of 356

50 Stupid as in "stupid programmer"

function (notice the leading period) is applied to the document which has been pre-
defined for us.

• Javascript is very forgiving, but sometimes too trusting, about mixing numbers and
strings

• COUNT in upper case tells us immediately it is a constant.

Java
@@@

Modifying 5.1
Edit the code to add a maximum and minimum and show these as well.
1. Initialise two variables
2. Test and set in the analysis loop. This would follow the pattern:

if a[i] > max then max = a[i]
adapted to your particular language.

3. Report

What could possibly go wrong?
• The loop counters don't start at the right place (0 instead of 1 or vice versa)
• The loop counters don't finish at the right place.

This type of programming error (called off-by-one) is one of the most common and
will dog you every day you program. Like a restless poltergeist it will press the
wrong key from time to time and cause horrible grief. Be strong and resist! Most
programmers find double checking beats a lucky rabbit's foot.

• What happens if the number of items is zero. Do the loops (not) work ok? What
happens when we divide sum by zero? Empty arrays and zeroes happen all the
time - often that's part of the plan. However there may be unusual circumstances
where it is even more important than usual to avoid this trap. Suppose our program
was monitoring communications. If zero bytes were received in a period that's
probably when our diagnostic reports would be most useful - but then the program
crashes with a stupid50 'divide by zero' message.

• Some of these languages treat Sum and sum as different entities. discover a naming
style that suits you and the programming community you inhabit and try your very
best to keep to it at all times.

Review
Let's take time out a moment to see what this chapter has been about so far.
• You've found a way of writing instructions and getting the computer to swallow

them.
• You've thought through a 'how to make it happen' procedure and implemented it as

a computer program.
• You've seen a number of programming styles which are almost different dialects

than languages. Overall they are very similar, but the details are interestingly
different. (As we continue differences will become more interesting.)

• You've experienced some of the practical difficulties. If it is any consolation, my
examples had to be err... 'tweaked' to get them to a state I was happy with. Old age
is my excuse - but in reality a lot of programming is about spotting and dealing with
bugs.

Programming Version 0.4 Page 48 of 356

51 We will talk about 'Business logic' in another chapter@@@.

Now we'll change the emphasis from coding to designing the program method. I'm still
expecting you to get all programs to run as described because you need to get a few
hundred lines of code under your belt before you start pick the right sort of approach
every time.

Bear with it - Every mistake you make now should save repeating it in the future - or at
least you'll recognise it with a 'Duh! not again'. That's what learning is all about. If you
can't hack this section then give up programming. Actually, typing code will soon
become second nature - it is the thinking of the best overall plan that will sort the men
from the boys.

5.2 Sorting
Being able to sort a list is often very useful. There is more to this than the aesthetics of
having your address book in alphabetical order. Many times there are good business
reasons51, sometimes a method will only work if all the same kind of thing are lined up
together. A lot of languages will sort for you or you can get sort functions to add-in off
the shelf. Doing sorting well is tricky for two reasons : Firstly there isn't always one
'best' method (but there are too many easy to program but excruciatingly slow
methods). Secondly it is easy to make mistakes when programming.

For this exercise we will take as our task sorting the days of the week alphabetically.
What we will discover is that we need to think beyond the way we'd use paper and
pencil because computers are a lot better at juggling data items in memory than
humans.

EX_5.2_BY_HAND
0. With pencil and paper
1. Write the names of the week in a list down the page
1.1 Starting at Monday
2 Draw a second column next to the days of the week
2.1 Call this 'sorted column'
3. Find day of week that appears earliest alphabetically
3.1 Look for first day name not crossed off as 'candidate'
3.1.1 Make a note of row number - 'candidate index'
3.1.2 For each following row do the following
3.1.2.1 See if the candidate day is later than this day
3.1.2.2 If yes then this day becomes the candidate
3.1.3 Repeat 3.1 until end of list is reached
- The first time through this loop the day should be Friday
4. Move candidate to the sorted column
4.1 Write day name in sorted column
4.2 Cross it off the first list
5. Continue 3 and 4 until sorted column has 7 items in it
5.1 Keep count of items in sorted column

Programming Version 0.4 Page 49 of 356

5.2 If that count is less than 7 then loop back to 3
6. Report sorted column
There's no real need to actually do this by hand so long as you're satisfied that it would
work. This is a repeated 'find the lowest' (which we did at the end of exercise 5.1) with
the added complication of adding it to a new list and somehow deleting it from the
original list.

Algorithms
We will deal with algorithms in a lot more depth in a later chapter@@@ really?. The
overview is this:
• An algorithm is a posh name for method or procedure
• Some algorithms are 'better' than others. 'Better' depends on what you mean by it:

Fast, compact, reliable, works for large amounts of data, only uses a small amount
of memory, can be proved to only need certain resources as a worst case.

• Algorithms are usually defined in pseudo-mathematical or logic terms for purposes
of proving they work...

• ...then translated into real code which can be strictly monitored

A sort algorithm suitable for a computer
Overall idea : If we started at one end of a list of items and worked our way to the other
all the time carrying with us the largest so far then we would end up with the largest
ready to dump at the end. Now we can ignore this end one in future sorts and do the
same for the list again but this time for one fewer items.

list of N items
list of N-1 items + highest
list of N-2 items + 2nd highest + highest
list of N-3 items + 3rd highest + 2nd highest + highest
etc. until
1 item followed by ordered remainder

As an algorithm that's pretty convincing from a will it work and is it guaranteed to work
under all possible conditions point of view...
...So let's try the second stage : putting it into code:

const
 N = 7; // No of items
var
 i,j : integer;
 dow : array[0..N-1] of string;
 tmp : string;
begin

 dow[0] := 'Monday';
 dow[1] := 'Tuesday';
 dow[2] := 'Wednesday';
 dow[3] := 'Thursday';
 dow[4] := 'Friday';
 dow[5] := 'Saturday';
 dow[6] := 'Sunday';

 for i := 0 to (N-2) do begin
 for j := i+1 to (N-1) do begin
 if dow[i]>dow[j] then begin
 tmp := dow[i];
 dow[i] := dow[j];

Programming Version 0.4 Page 50 of 356

 dow[j] := tmp;
 end;
 end;
 end;

 // report these by outputting to a Tmemo
 // (ie print 1 line at a time)
 for i := 0 to N-1 do begin
 m.lines.add(dow[i]);
 end;
end;

The first part of exercise 5.2 is to code this in your particular programming language.
When you've got the typing mistakes and other silly things out of the system - what do
you get? Is the list alphabetical as promised? It should be.

Notice how the computer program could sort the list in-situ without needing another
array.

What could possibly go wrong?
Apart from the usual off-by-one and typing errors?

Err... How about: The code given above as a template doesn't do what the algorithm
given said it should do! In fact when you look at it can you understand how it works
and if it is just lucky-so-far or if it too will give a guaranteed result.

Try fiddling with the data given to the program to see if it always gives a sorted list.
Don't forget to alter the number of items in the list because there might be an issue with
odd or even numbers of items. OK so it looks like (after a handful of tests) that the code
delivers the goods - But is "looks like" good enough? in the words of the old song: No No
A thousand times No!

We will address this issue properly in a
later chapter - But the essential lesson
is that you can only prove the
correctness of an algorithm and from
there validate your code. In this
example we have what purports to be a
sort program but not the algorithm to
go with it. (We've got a different
algorithm.)

5.3 Digital roots
If you add up all the individual digits of a number (adding this up in turn if necessary
until you get a single digit) the result is called the digital root. For example the digital
root of 789 is 6. (7+8+9=24 ... 2+4 = 6) I haven't actually come across a situation
where this has been needed but it will serve a very useful pedagogical purpose.

EX_5.3_BY_HAND
0. With pencil and paper
1. Write down number

Tough stuff this algorithms business eh?
Congratulations - most programmers
wouldn't know how to validate their code
if it sat up, wagged its tail and begged. At
least you now know it goes high up your
agenda.

Programming Version 0.4 Page 51 of 356

52 See the algorithms section for more.@@@

2. Add up all digits
3. If < 10 then report result, Finish
4. Repeat procedure using this number.

The important bit of this is line 4. The procedure says "re-do using your recent result as
your argument". This snake-eating-its-own-tail is called recursion. The reason we
ought to look at this is that it can make for neat programming, but needs to be handled
with care. A simple example is if we wanted to search all the files on a disc. We start
at the root¤ and list the files and sub-directories. Then repeat for each sub-directory
(which of course lists all its sub-directories. Another use is where we split one problem
into two smaller problems and then those problems are subdivided again and so on
until we've got down to size that is easy to solve. For example suppose we want to sort
a list. We could put all the large items at one end and all the small items at the other
then split into two sub-lists and repeat for the large (into very large and not so large)
and small (not so small and very small) portions and then again (eg very small into
teeny-weeny and microscopic). Each time we're using the same method in finer and
finer detail52.

If we had a function called AddDigits() how could we code this?

function DigitalRoot(WhateverNumber:integer):integer;
var
 n: integer;
begin
 n := WhateverNumber;
 while(n>9){
 n := AddDigits(n);
 }
 result := n;
end;

• The function definition tells us it takes one integer parameter (WhateverNumber)
and returns an integer to the calling program.

What we have here is not recursion, just repetition. We also have two functions:
AddDigits() and DigitalRoot() But nevertheless we can see how it works and be
confident that it works.

Here is an all-in one function which does use recursion.
function DigitalRoot(const aNumber:integer):integer;
var
 dr, n : integer;
begin
 // *Instrumentation goes here to report argument*

 // this bit does the adding of the digits
 dr := 0;
 n := aNumber;
 while n > 0 do begin
 dr := dr + (n mod 10);
 n := n div 10;
 end;

Programming Version 0.4 Page 52 of 356

 // this is where we decide if we've finished
 // or need to crunch the number a bit more
 if dr > 9 then result := DigitalRoot(dr)
 else result := dr;

 // *Instrumentation goes here to report result*
end;

• mod is the modulus operator. Modulus gives 'the remainder when divided by'. So for
example 8 mod 3 is 2, 9 mod 3 is 0, 10 mod 3 is 1, 11 mod 3 is 2. Anything 'mod 10'
gives the last digit.

• div is Delphi's integer division operator. Basically any fractions are thrown away.
For example 8 div 3 is 2. You may think that's a rather senseless thing to do, but
let's see...

In Javascript the adding of the digits loop looks like this:
 while(n > 0){
 digit = n % 10
 dr = dr + digit
 n = (n - digit) / 10
 }
Why is this is a lot more complex than the Delphi/Pascal version? The reason is that
Javascript doesn't know that n must always be an integer and doesn't do integer
division. Let's trace the code with n = 345.

digit is 345 modulus 10 which gives 5
Add 5 to dr
345 - 5 gives 340 ... divide by 10 gives 34

Which is now the next integer-a-like n to work with. Another way of doing this is
 while(n>0){
 dr = dr + (n % 10) // note brackets
 n = Math.floor(n / 10)
 }
Which relies on a built-in function that drops the fractional parts of a number.

• The *Instrumentation* markers show where you can add some reporting to follow
the program flow. Instrumentation is a term used to describe special code which
reports on the workings of a program. In this case we will want to print a line
which says "Argument is :"+aNumber at the start and "Result is :"+result at the
end. (Details depend on YCPL.) Sometimes you remove the instrumentation
completely, other times comment-out to leave a clue to anyone looking at the code
later what was worrying you, or provide a switching mechanism along the lines of
if(areWeInDebugMode){... do instrumentation ... } We will look at
debugging later on.(@@@ Where?)

• Before running the program with instrumentation, jot down what you expect to see.
After running with instrumentation were you surprised? This is why recursion is
tricky, because the flow of control isn't always obvious.

What could possibly go wrong?
• If we make some error in the return condition we could recurse for ever.
• If we make some other logic error almost anything could happen. Don't even think

about poke-n-hope programming with recursion. You must be rigorous. That's why
the study of algorithms is important.

• In the Javascript code for adding the digits we could come a cropper with rounding

Programming Version 0.4 Page 53 of 356

errors if n - digit / 10 isn't exactly an integer due to the accuracy limitations of
binary arithmetic...

... so why don't we do belt and braces an use the Math.floor() function as well?
Because the result of dividing by 10 might be a minute fraction under and floor()
will see this and think we want one whole number less.

These mathematical errors may never happen during testing. Perhaps we test using
10,000 numbers and everything works fine, but would you fly in a computer
controlled aeroplane where there is "less than 1 in 10,000 chance" of a program
crash. (And that's only in one tiny fragment of code.)

5.4 More dice
One of the useful things that computers
can do is perform simulations to let us
understand how systems work. For
example after trying 18 times to get
through to the Inland Revenue
telephone call centre, I though what's
the chance of that - they must have far
too few staff. I should think that's
obvious, but before going much further
we need to put some figures to say
something like : "Need 80% more staff
to give a 80% chance of being
answered on two attempts".

The object of this exercise is to do a simulation and look into how to display results.
Also, now you can read code as well as write it, this is an opportunity to see what is
involved in translating code.

The subject of the simulation is to see what the probability of getting a particular score
with two dice is. All we'll do is throw the dice 1000 times and count the number of
times we get each score.

I've written you a ready-to-run Javascript program. Type it into a text editor : typing
practice is a good thing - you can see how accurate you are then save the file as
ex54.htm and look at this file in your web browser. (See Javascript appendix for more
details.) Or you can re-write it in your chosen language; not word for word or even line
by line, but section by section after twigging what's going on in that section.
• The last section (with the <table border=1> in it) is HTML specific, but if you ever

think you might be displaying tabular information on a web page you should check
out the nesting of the blocks (td inside tr inside table) which is an extremely
common web page programming task.

<html>
<head>
 <script LANGUAGE="JavaScript">
 // *******************
 // ***** Heading *****

Think of the economics. Let's suppose you
spend 2 man-hours on programming and
the rest of the day collecting some actual
data and improving the model. Your
results will say how many people to
employ week-in week-out. So that's one
good reason why good computer people
should be paid well. It is also a reason
why suits hate programmers because the
programmers can point to the knots in the
system, often exposing embarrassing false
assumptions. Managers don't want to get
involved with cans of worms like that.

Programming Version 0.4 Page 54 of 356

 // *******************
 document.write("<h2>Exercise 5.4 - Display</h2>")
 document.write("<hr>")

 // ---- define parameters of experiment ----
 NOOFDICE = 2
 NOOFTHROWS = 1000

 // return a random number 1 to 6 inclusive
 // ---------------------------------------
 function ADiceThrow(){
 return 1 + Math.floor(Math.random()*6)
 }

 // Hack to align numbers. Return a two digit
 // string version of the integer parameter
 // ---------------------------------------
 function TwoDigitInt2Str(i){
 s = "___"+i
 sl = s.length
 return s.substring(sl-2,sl)
 }

 BAR = "##"

 // ---- initialise array to keep hits in ----
 maxScore = NOOFDICE*6
 hits = new Array(maxScore+1)
 for(i=0;i<=maxScore;i++){hits[i]=0}

 // ---- run the experiment ----
 document.write("Testing " + NOOFTHROWS + " throws with " (cont. next line)
 + NOOFDICE + " dice
")
 document.write("<hr>")
 for(t=0;t<NOOFTHROWS;t++){
 score = 0
 for(d=1;d<=NOOFDICE;d++){
 score = score + ADiceThrow()
 }
 hits[score] += 1
 }

 // ---- report the results in three ways ----
 for(i=NOOFDICE;i<=maxScore;i++){
 document.write("Score of " + i + " thrown " + hits[i] (cont. next line)
 + " times (" + (hits[i]*100)/NOOFTHROWS + "%)
")
 }
 document.write("<hr>")

 for(i=NOOFDICE;i<=maxScore;i++){
 s = TwoDigitInt2Str(i) + "|"
 percent = (100 * hits[i])/NOOFTHROWS
 s = s + BAR.substring(0,percent)
 document.write(s + "
")
 }

 document.write("<hr>")
 document.write("<table border=1>")
 for(i=NOOFDICE;i<=maxScore;i++){

Programming Version 0.4 Page 55 of 356

53 Strangely you never hear of 'softcoding'. If you do that's a Suit-alert.

 percent = (100 * hits[i])/NOOFTHROWS
 b = BAR.substring(0,percent*(NOOFDICE-1))
 document.write("<tr><td>"+i+"</td><td>" + b + "</td></tr>")
 }
 document.write("</table>")

 // **
 // ***** flag end of program reached OK *****
 // **
 today = new Date()
 document.write("<p><fontcolor=green><small><i>[" (cont. next line)
 +today.toLocaleString()+"]</i></small>")
 </script>

</head>
<body>
<!-- all the work goes on in the javascript in the HEAD -->
</body>
</html>

When you've got the program to work
after a fashion you can look at the
code above again and notice the
following practices. (From top to
bottom)
• The parameters we were initially

given were 2 dice thrown 1000
times. Now isn't the first thing
you want to fiddle with these
parameters? Of course. Wouldn't
it have been easy for somebody
who didn't think like a
programmer thinks to have
written the program with fixed
numbers. Doing that is called
hardcoding which is often a Bad
Thing53.

• Why such simple functions?
Surely it would have been less bother to put this code in the main body?
• Throwing the dice is a bit of a tricky thing to get right. In Javascript the

random() function returns a number between 0 and 1 which we've got to convert
into 1,2,3,4,5 or 6 and be absolutely sure that every score gets the same
percentage of hits.

• Where you want to do something a little fiddly which is a distraction from the
body of code it is handy to stick it into a function so that when trying to read the
main code we can concentrate on one level at a time.

• random() functions in different languages work in slightly different ways. You must

Programmers always think how a program
might be re-used and developed.

I've lost track of the times I've said to a
client: "Are you really really sure this is all
you want to do?" to be told "yes" - only for
events to require just the extensions I
envisaged. But I'd allowed for that
anyway and spent a fraction more time
designing-in extendability so there wasn't
much grief. Users are often the least
qualified to understand what they could
do given new tools. Never mind - If we
didn't have suits all the flip chart makers
would be out of jobs.

Programming Version 0.4 Page 56 of 356

54 Underscore because when rendered in HTML a space would get 'lost'. This is a horrible
hack not a recommended procedure.

read the documentation. One interesting feature of many languages is that (in a
very complex way) the next number depends on the current number. This means
that it is sometimes possible to repeat the simulation with exactly the same pseudo
random numbers.

• TwoDigitInt2Str() is a funny thing. For drawing a bar chart if the numbers on the
left are sometimes one digit and sometimes two this distorts the alignment. This is
an attempt to deal with that problem by always returning two characters by
padding single digits with a leading underscore54. What a mess! Luckily most
languages have built-in functions for tidy formatting. By the way, the '2' instead of
'two' in the function name is often seen but not a very good idea.

• Note the hits array is explicitly set to zero - generally good practice
• Reporting something at the start (and possibly some progress counter) is a good

idea when you may be waiting a while for a result.
• foo += bar is shorthand for foo = foo + bar
• In this program we report the results in three ways (split by <hr> which is HTML

for horizontal line)
• Firstly simply listing the figures
• Secondly in a crude bar chart. Nowadays many languages give you better

graphical drawing facilities, but as you see this is quite effective.
• Thirdly the particular features of the language (actually HTML) are exploited to

improve the presentation. Replace border=1 with border=0 for extra prettiness.
A cool feature added to the this bar chart is magnifying the bar scale so we can
see more detail when there are more dice (and hence a wider spread of scores
and so smaller percentages).

The effectiveness of a program often depends on the quality of the user interface. We'll
look at this in more detail later, but for now you might want to see how you can produce
a cool display using your chosen language. (But be warned, that could be quite a task
for a beginner - don't get bogged down in complexities just now.) One thing you could
try is indicating a horizontal scale. (One cheeky way is to replace every tenth # in BAR
with a *. Often keeping things simple means you can concentrate on the guts of the
task rather than spending ages just to put some pretty ticks in.)

What could possibly go wrong?
• The ADiceThrow() function could be biassed. How can you check this out? How

about 1 dice(die) and 200000 throws? Hey! Parameterising the number of dice and
throws was cool wasn't it.

• The BAR string used to draw the chart might not be long enough.

Just so you don't feel too bad about spending ages trying to get a program to
work, you may be interested to know that it took me ages to get
TwoDigitInt2Str() working. A real hitting head against a brick wall situation.
I was using substring() the wrong way. Actually, my annoyed response when I
finally read the documentation was "for goodness why can't it work like every
other language's substring function!". Grrr!

Programming Version 0.4 Page 57 of 356

55 International Standard Book Number

56 Javascript can be hacked and is relatively simple when you know how but is not worth
bothering with here.

5.5 ISBN
This is a simple final exercise. By now you should have all the skills and knowledge
necessary to crack this in five minutes.

You'll have seen the ten digit numbers and barcode on books called the ISBN.55 The
last character is a checksum derived (like we did the digital root) from the first 9 digits.
The object is to trap typing mistakes so that a mismatch between the computed and
given checksum will raise an error alert.

The method used to calculate the checksum wants to try to catch common typing errors
such as transposition("ba" instead of "ab") so a simple digital root style of adding all the
digits won't help very much as 12345 gives the same result as 54321. There are lots of
different checksum methods, the one the ISBN uses is:

The sum : (digit 1 * 10) + (digit 2 * 9) + (digit 3 * 8) + ...
(digit 9 * 2) + checkdigit must be divisible exactly by 11

There is a wrinkle : Sometimes the check digit has to be 10! X is used to represent this.

• Already you'll have seen that the checkdigit part of the sum is just an extension of
the rule used for all the other digits (ie digit 10 * 1)

You're on your own to code this one but here are some points to note:
• If your language conveniently allows input56 then write your program to take a user

input and report if the number is OK.
• What if somebody puts in a wrong-length ISBN?
• The way to test is? ... To take some real ISBNs from actual books. Is one book

enough? 10? 100? Are you testing to trap mistakes as well as good ones? We'll
look at these questions in more detail later.

• Probably the best way to represent the ISBN is as a string rather than a number.
This will give you a chance to read the manual on :
• How to examine the nth character of a string. Tricky due to possible zero-base-

indexing but quite a frequent job and worth getting out of the way
• How to find the first occurrence of one string in another
Using these you can do something like
for each character in ISBN
 find how many places into "0123456789X"
 multiply this index by the appropriate weighting and add to total
If total mod 11 is 0 then report OK

What could possibly go wrong?
You should be getting the hang of this now. WCPGW is usually a matter of 'certain
inputs might cause a problem.' Go back and look at your test data. Have you tried
really bizarre inputs. What if the input is 2000 characters long? No really, this is
important. You'd be amazed at the number and seriousness of the security breaches

Programming Version 0.4 Page 58 of 356

57 And a proper shelf on top of the warm monitor for the cat.

58 At least those we've looked at so far

59 I've cut out an exercise in reality checking because enough is enough and by this time
you've had more than enough - Hey! that's a reality check... really? Yes, you're real, this
book is just information, these words are just made up in the hope they make sense in
some wider picture. they only describe the real world they are not actually the real world.

this has caused.

Chapter 5 conclusion
Phew! What a chapter that was. Your brains are probably melted from overload.
Future chapters will not be so code-intensive. Just take a moment to go over the whole
chapter again. You'll see that what was difficult is now easy and that shows you've
learnt the skills and taken in the knowledge.
• You've got the hang of the practicalities of coding, and no doubt experienced the

'joys' of debugging. One of the things you may have found is the level of
concentration required can be quite intense. How people program in open-plan
offices full of distractions is a mystery to me.

• As time goes by you'll develop all
aspects of your programming
environment, both on the computer,
on your bookshelves and in your
office. Don't be afraid to
experiment. If you program through
the night (a lot of people prefer it
because it is quiet and there are
fewer distractions) you may want to
change your display so it shows
bright letters on a dark background.
There are all sorts of things to try: A
more comfortable chair, a heater for
your feet, the right spectacles, trackball instead of mouse, two screens, and that's
without even considering programming tools and IDEs.57

• You've discovered that programming languages seem to have a basic common core
which means you can pick up what is going on fairly easily.58 To get a feel for their
relative strengths and details takes experience - but don't be afraid to have a peek
at other languages to see what they have to offer, who uses them and why some
people have strong opinions for and against.

• On top of the strict discipline of programming language syntax you have seen that
you have to take a rigorous approach to stitching together instructions. Remember
that sort program (5.2) which didn't even use the specified method! You will never
write perfect programs but a calculated approach will save you hundreds of hours of
grief, not to mention the benefits of giving the general public software they can rely
on. Your whole programming life (and probably all of it once you click with the
concept) is about reality checking an unreal world inside a computer59.

• If a programmer was asked to make a machine for bottling lemonade they would
immediately think "Hey, this could and should be adapted for other fizzy drinks ... I'll
start by building a generic fizzy-drink-bottling machine and tweak it for the specific

I work from home and found that things
were happening outside which I couldn't
quite see because my chair was lower
than the window. Getting up to scan the
scene was a big time waster. Solution:
Raise computer bench and chair by 18
inches so now I can glance out to see the
activity outside, wave to the neighbours
when I see them passing and so on. (And
of course just gaze out of the window
putting off work a bit longer.)

Programming Version 0.4 Page 59 of 356

60 For what it is worth it is my opinion that some people are better at mental agility than
others, but it can be developed, then decays with age.

61 And bullying. You can't bully a computer ... which is why suits look for some other target...
guess who?

62 Have a guess: Do I speak from experience? Could I Bore for Britain on this subject?

63 If you are not tolerated and you know your stuff then you are dealing with, shall we say, a
bounder. A few months after you leave they depart under a black cloud. Bounder-suits
(as opposed to bumbler-suits) have antennae that will instantly detect the one person who
is always doing reality checks.

case of lemonade." (Programmers enjoy solving problems but hate work; that's why,
if for a small extra investment they can deliver twice or ten times as much they go
home happy.)

• Once you understood the concept of what the problem was you could then use your
knowledge to implement it in many different ways. There is often no one Right Way
to write a program - Which is why programmers need to read books like this to give
them the breadth of outlook in order to exploit a range of techniques.

• WCPGW? On the one hand a programmer is thinking in theoretical terms about the
general case and how flexible their program should be - that's fine... On the other
they have to deliver a specific solution that will work every time. That requires
mental agility60. By the way, WCPGW is something you get from experience and
reading about the experiences of others. Don't expect to ever be able to smoke out
every gremlin.

Important
• Details matter to programmers. So does cleverness. So does delivering what was

asked for. A programmer should be a master of practicalities, precision and
performance... which is why they don't get on with suits. (What are the
characteristics of suits? Assumptions, vagueness and excuses.61) Take it from me62

that the only way to deal with suits is to stick to facts, never ever compromise on
the facts, don't give into low level or high level bullying and you'll start to get
respect - or if not respect, be tolerated63. (You won't get promotion ... especially
when you save everybody else's bacon.)

Finally: Well done to get this far. I'm sure many readers have given up. If you're still
with me then you have got over the worst The rest of this book still requires mental
capacity but isn't so intense as this last
chapter.

6. Data
structures

How Real Programmers think.
That's what this book is about....

...Should I have made that nice warm shelf
over my monitor large enough for both
cats? (WCPGW - You guessed - I Didn't - There is one
sulking and one glaring as I write.... Fur may yet fly...)

Programming Version 0.4 Page 60 of 356

You know what's coming: It's going to be technical with lots of diagrams. No and No.

By the end of this chapter you'll have a clear grasp of what data structures are... but you
actually know about them already. Probably you don't know you know!

In the next chapter will deal with the way data is represented internally in objects. In
this chapter we'll consider how 'things' can be related.

A trip to the supermarket
You write out a shopping list[1] which may be structured with similar things together or
be a list of shops to visit each with sub-lists[2]. So you drive to the shops, take your turn
at getting into the car park[3] and find a suitable free parking space[4]. Now you take a
basket from the top of the pile (or a trolley from the 'back' of the nested line) [5] and
enter the supermarket. Firstly you head for the fruit-and-veg section, in particular the
fruit sub-section and find the apples and then the Granny Smiths[6]. Now for the
remainder of the things on your list you pick a suitable aisle[7] and proceed along it
until you get to the items you want[8]. Now you wait in line at the checkout and put
your items on the conveyor belt [9]. Now you pile your items into bags[10] probably
finding that you need more bags than you brought with you.[11] You find your car in the
car park[12], put your bags in the boot[13] and go home. At home you ask one of
Mummy's Little Helpers to unpack the bags and put the items in suitable cupboards,
shelves etc.[14]

Discuss
When you're making up a shopping list using pencil and paper you are not strictly
limited to sticking the next item you think of at the end of the list, but when you take a
supermarket trolley you can't take one from the middle of a line. In the supermarket you
can pick an aisle at random but once you're in it you end up going the whole length of
the aisle to find one item. These are real-world examples of organising the storage and
processing of things. Inside a computer we use exactly the same methods.

[1] Lists
We have come across arrays already. Isn't that a list you ask? Well err.. sort-of. An
array is a number of slots for putting things in. Often, for reasons of efficiency, you fix
the number of slots. This is fine for many situations but gets very messy when you
want to insert and delete from the middle. The next item in the list is always 'one more
in the index'. This is a great advantage if your data fits nicely into this pattern because
all you have to do is start at the first item and keep adding one to the index until you
reach the end. But when writing a shopping list you're always thinking of things almost
at random which don't want to go in the list at random. 'Take the library books back'
doesn't want to go between cornflakes and crisps.

Each item in a list keeps a note of its neighbours in the list. The first item points to the
second, second to third and so on. So how does this help - surely it's just a line at the
end of the day? So it is, but if we want to delete say the 6th item this is how it happens
in an array:

move item 7 into place 6, move item 8 into place 7 and so on move

Programming Version 0.4 Page 61 of 356

64 How objects are actually created, destroyed and allocated space is a subject for a later
chapter.

item 333 into place 332, make a note that there are only 332 live items
in the array.

For a list all we have to do is
set the pointer of item 5 to point to where item 6 pointed (which in
effect bypasses 664)

To insert a new item into an array means shuffling all the later items up one. To add an
item to a list we have to break the chain of pointers at the right place. Suppose we're
adding after item 4:

Copy where item 4 points to to the new item (Item '4.5' now points to
5). Set item 4 to point to the new item. (The chain is now: 3 points
to 4, 4 points to 4.5, 4.5 points to 5.)

Lists come in various flavours and are used in various ways which we'll discover shortly.

[2] Lists of lists
Your shopping list might start with places to visit as headings. Library, bank, butcher,
dry cleaners, supermarket and so on. Each of these may have its own list of things. So
each of the top-level list items has a pointer to the next top-level list item (as just
described) and also a pointer to the head of a list of 'child' items.
• Lists of lists are extremely common and useful
• They can be lists of lists of lists of lists ...
• Items at the same level are often called 'siblings'
• Items at the next lower level are generally called 'children'. (And vice versa 'parent')
• All the list-goodness applies to lists of lists, plus two very useful characteristics of

the hierarchical structure:
• You can work your way down the levels of a list getting 'more detailed at each

stage' (and vice versa, ignore details when you want to work at a high level.)
• Every child has a parent which gives it context.

Programmers are always thinking hierarchically. See [6].

I've been a bit vague about these pointers and how they actually 'point'. Don't worry the
nitty gritty details will eventually be covered.

[3] Queue
A queue is a list which has new items added at the 'back' and always gives up the one
on the 'front'. Here is some code for you to grovel through. It implements a queue using
a circular buffer. This means when we get to the end of the space allocated for storing
items we start again at the front. The really important part of this is that we don't
actually move the items just the pointers for the head and tail. Each time we take an
item of the head we increment the head pointer so it points at the new head item. (This
code is ready-to-run if you want to try it out.)

<html>
<head>
 <script LANGUAGE="JavaScript">
 // *******************
 // ***** Heading *****
 // *******************

Programming Version 0.4 Page 62 of 356

 document.write("<h2>Queue illustration</h2>")
 document.write("<hr>")

 /*
 1. We need somewhere to store the items. An array
 is ideal. WCPGW? Too many items. As it stands
 this program doesn't handle this problem
 2. Real world objects like people waiting at a
 checkout move. We can use the magic of pointers
 to keep track of head and tail so we DON'T EVER
 MOVE the items in the array
 3. We need a way to tell the queue is empty
 4. When the pointers reach the end of the array they
 'wrap' back to the zeroth position ("% 20" does that)
 5. DisplayQueue is an extra feature for illustration.
 (The funny for loop works by sending the index i
 up and round the loop until it reaches the end, but
 the 'have we reached the end' test is in the body of
 the loop not the head.)
 */

 // ----ititialise----
 queue = new Array(20)
 frontItemPointer = -1 // flag for not-valid
 backItemPointer = -1 // flag for not-valid

 // ----functions for manipulating queue----
 function AddItem(aString){
 if (backItemPointer == -1) {
 frontItemPointer = 0
 backItemPointer = 0
 }else{
 backItemPointer = (backItemPointer+1) % 20 // 20->0
 }
 queue[backItemPointer] = aString
 document.write(""+aString + " added at back
")
 }

 function GetItem(){
 if (frontItemPointer == -1){
 s = ""
 }else{
 s = queue[frontItemPointer]
 if (frontItemPointer == backItemPointer){
 frontItemPointer = -1
 backItemPointer = -1
 }else{
 frontItemPointer = (frontItemPointer + 1) % 20 // 20->0
 }
 }
 document.write(""+s + " taken from the front
");
 return s
 }

 function DisplayQueue(){
 if (frontItemPointer == -1){
 document.write("Queue is empty")
 }else{

Programming Version 0.4 Page 63 of 356

65 The magic is objects and automatic storage allocation. Bear with me. Code Bunnies can't
fly.

 for(i = frontItemPointer;;i = (i + 1) % 20){
 document.write(" ["+i+"]=" + queue[i])
 if (i == backItemPointer){break}
 }
 }
 document.write("<hr>")
 }

 // ---- exercise the functions ----
 DisplayQueue();
 AddItem("one");
 AddItem("two");
 AddItem("three");
 DisplayQueue();
 s = GetItem()
 DisplayQueue();
 AddItem("four");
 DisplayQueue();
 s = GetItem()
 s = GetItem()
 DisplayQueue();
 AddItem("five");
 AddItem("six");
 DisplayQueue();
 for (i=1;i<10;i++){
 AddItem("I"+i)
 GetItem();
 }
 DisplayQueue();
 for (i=10;i<17;i++){
 AddItem("I"+i)
 GetItem();
 }
 DisplayQueue();

 // **
 // ***** flag end of program reached OK *****
 // **
 today = new Date()
 document.write("<p><small><i>[")
 document.write(today.toLocaleString()+"]</i></small>")
 </script>

</head>
<body>
<!-- all the work goes on in the javascript in the HEAD -->
</body>
</html>

• What are the options for handling the 'quart into pint pot' WCPGW? Use a list of
course! Don't try this at home - yet. I'm keeping some magic back until you're ready
to handle it. So stay in the nest a little bit longer.65

Programming Version 0.4 Page 64 of 356

[4] Random access storage
You can put you car in any space you like in the car park.
• If there are any spaces.
• There may be some reserved for special uses
You may have to hunt for a space. When there are only a few spaces left it is more
difficult to find one you prefer.

Computer memory, both the working RAM and hard disc are organised so you can park
things pretty much where you like. Fortunately the details are handled for you by the
electronic version of a parking attendant who does the actual parking and fetching for
you. Some languages give you more power over the parking attendant than others.

Memory allocation will often be done completely transparently, all you have to worry
about is not hogging memory unnecessarily. Many languages clear up after you, so
freeing the memory for the next job. This is called garbage collection. Failing to free
memory allocated to your program results in a memory leak. After each run of the
program (or function) the computer has less memory free until ...

See [12] for one way of finding your car again.

[5] Stacks
Consider the pile of baskets at the door. You can only take the top one or return an
empty on the top. This is called a stack and is
extremely significant in computing. (A stack is
pretty much the same as a queue except
adding and removing take place at the same
end.)

You use a stack when you want to defer something you're dealing with while you work
on something else. Suppose you are working on coding a cool program when the phone
rings. You halt coding and answer the phone. Then the postman rings the door bell so
you ask whoever phoned you to wait a moment and answer the door. Then return to
the phone call. Then when the phone call is finished return to coding. As each task is
interrupted it gets put on the stack (pushed is the term used in computing) then when
an interrupting task finishes the stack is popped to return to whatever it was that was
interrupted. Does 'return' ring any bells? I should hope so.

You will probably come across stacks when doing involuntary debugging. The
interpreter might say something like

divide by zero in foo()
exception in bar()
exception in baz()
program halted in main

This is telling you that the main program called function baz() which called function
bar() which called foo() where the actual problem is. Let's see how a computer might
process the following code:

if (FunctionFoo() > FunctionBar()) { ...
Let's work on the IF condition. The first part is a function which I need to evaluate before I can continue. Make a note of
where I've got to so far ON THE STACK and jump to the start of FunctionFoo(). Do the work in FunctionFoo()... Aha
Finished. Now where was I? Oh yes I made a note of that on the stack. Next is greater than. Now another function.
Make a note of where I've got to on the stack. Jump to the start of FunctionBar()....Finished FunctionBar() so pop the
stack to get back to trying to evaluate the condition....

Do you remember in chapter 5 when looking at digital roots we had a function that

First-in-first-out : FIFO : A queue
Last-in-first-out : LIFO : A stack

Programming Version 0.4 Page 65 of 356

66 Actually it is more subtle than this - Some of the details will be revealed in the Algorithms
chapter@@@appendix

called itself. No problem... unless it never returns. The call stack would get larger and
larger until it overflowed.

[6] Keyed access - dictionaries
Time after time we want to find something by name. The general form is:

key ---> value
• Key is often a string.
• Value can be anything.
• Physical storage can be anything from an array to a database
The two core operations are

• Add this value and label it with this key
• Fetch the value that matches this key

In the supermarket a programmer might think of
/FruitAndVeg/Apples/GrannySmith or FruitAndVeg.Apples.GrannySmith

Hierarchical keys are common in everyday programming. 'Inside' many dictionary type
programs there will be a hierarchical structure, perhaps like your address book that has
one page for the people beginning with A and then all the A-names listed. We are
firmly in list-of-lists territory here. A computer might have the top level list for the first
character of the name, then lots of second level lists for the second character of the
name. This is a good thing because instead of having to plod through 100s of names
until a match is found the all you need to do is plod through 27 letters then you have
1/27th of the size of list to slog through.66 All of this normally goes on behind the
scenes and you probably don't need to worry about heaps, binary-trees and similar
exotic, but extremely important in their own way, data structures.

[7] and [8] Random -v- serial access
Supermarket aisles tend to have big signs over them saying what sorts of things you
can find along them. Aha! dictionary look-up which we've just discussed. But that just
gets you to the end of the aisle. Now you have to plod all the way down it until you
reach the thing you want. Sound familiar? That's what we were just discussing in [6].
Should there be lots of very short aisles or a few long ones to save the cross connection
space? It's a matter of compromise. Finding the best compromise is called
optimisation. Optimisation depends on the relative value of your resources. You might
be desperate to have something that works very fast, or using hardly any memory. It
won't come as a surprise that a lot of work has gone into the 'best' ways of doing things.

[9] More queues
Fortunately there are normally multiple checkouts working in parallel. The same thing
can be implemented in computing. For example when you call a web page from a large
web site your request will get passed to one of a number of web servers to be processed.

[10] and [11] In the bag!
Sometimes it is convenient to stuff things into a bag without any structure. Just bung it
in until it fills up then start another. Storage often comes in physical or administrative
units which you can do with what you like.
• Too many small bags are a nuisance
• Too much in one bag makes it difficult to

find things. (This is the ladies handbag

How do you structure your
directories? Neither one big one or
millions of almost empty ones.

Programming Version 0.4 Page 66 of 356

67 Such as in a genealogy program

68 Small lists and lots of levels is an efficient search tree and would be practical here.

problem. There is so much in there with so many pockets that nothing can be
found without great palava.)

[12] Hashing
When you left your car in the car park you didn't make a note "15th space in the 4th row".
Instead you remembered roughly where it was. When you come to find it agin you head
for the approximate area, then you should be able to recognise it immediately. This is
called hashing. There might be a slight problem if there's another car like yours in the
same vicinity but with a bit of investigation that can be sorted out. It is a very practical
method that's stood the test of time. The same goes for the computer version, only in
this case the hash program doesn't put the item to be stored just anywhere, but at some
place derived from the item itself. It's as if a car park with ten rows has a system
whereby the first digit of the registration number is used to pick the row and the a
rainbow colour system used for how far along the row, red at the near end and blue at
the far end. Of course this works for both putting and fetching. Although hashing is
used a lot behind the scenes an everyday programmer is unlikely to use it much - but
when it is the right tool for the job it will knock the socks off other methods.

There are some traps with hashing, but as it is such a cool technique perhaps we
should do some pseudo code. Suppose I have a thousands of records of people who I
know their names and dates of birth.67 One way of keeping my records would be to
have a sorted list of names, but each time I need a name I have to work my way
through the list of names until I get to the right one. This might mean a dozen tests
even with sorted lists of lists.68 Here's how we could hash. Let's take the digital root of
the date of birth to give us 1 to 9 and add it to ten times the last letter of the name
(Where value is here calculated as A=1 B=2 etc). So Mary Carter d.o.b. 15/3/47
has the hash (R2),182, Sam Holland d.o.b. 7/7/50 has the hash (D1),41. The largest
hash I can get with this system is 269 and the smallest 11. To store up to 250 people I
could use the following method.

Allocate an array with 280 vacant slots

To add somebody:
Calculate the hash
Until an empty slot is reached

Add 1 to the slot counter
Put into the place we've reached

To locate somebody:
Calculate the hash
Until an empty slot is reached

Test to see if the occupant of the slot is the one we want
If yes then finish

Finding an empty slot means the person isn't in the list

Ah yes I, ahem, forgot to mention hash collisions. What happens when now we come to
add Tom Raymond d.o.b. 23/6/62 which hashes to (D1) 41? This is the same hash as
Sam Holland. This isn't a fatal flaw because when we dive into the array to add Tom
and find Sam already sitting there at position 41 we just try a little bit further up the

Programming Version 0.4 Page 67 of 356

array. With any luck we'll only have to try a few until we find a space. The same
applies to fetching. The great thing about hashing is that it is very fast. Do a quick
sum on the key and you go to either exactly the right place or very nearly the right
place.
• Notice that this system can't give hashes less than 11 or any hash ending in 0. Do I

care about this 'waste of space', shouldn't I calculate the hash as nine times the
letter plus the digital root? No not really. Hashing depends on there being spaces
so these might come in handy.

• Can you guess what we do when looking further up the array and 'fall off the end'?
You've seen it with the queue example we looked at above - wrap to the bottom and
carry on.

WCPGW?
• Not enough spaces. This results in an item being stored many slots up the array

from the initial hash point.
• Uneven hashing. In our example there won't be many in the ten 'Z' slots from 260 to

269 but there are lots of names ending in R so the 180s will overflow into the 190s
and possibly beyond. (That doesn't stop S and T being used it just means they have
more competition.)

• What happens if somebody is deleted? A blank slot is left. That's fine for adding
another but can break the search procedure which stops at the first blank. So we
need to be a bit cleverer.

BIT_ROT_AND_EVEN_HASHING
- Bit Rot is a mythical process where old programs don't seem
- to work any more. Purpose 1 of this exercise is to check that
- BR hasn't set in to your digital root program.
- The second purpose is to see if the digital root of dates has an even
- distribution. You've done a simulation using dice so this should be a cinch.
0. Reusing code from digital root and dice programs
1. Confirm the digital root function works
2. Either
2.1 With all dates
2.1.1 ie for y=00 to 99, for m = 1 to 12, for d=1 to 30/31
- NB Write a 'how many days in month' function and put it safe
- You'll need it hundreds of times in the future
2.2 Or with random dates
2.2.1 ie y=random()*100, m= random()*12 etc
- NB no zeroes in months or days!
3. Count the frequencies of digital roots 1..9
4. Report

Final notes on hashing
• There are many ways to skin-this cat, for example you might hash your way to the

head of a list then work through the list.
• Hashing is no good whatsoever for sorting items or doing something like "I want the

people born in 1953" You need to know what you're looking for and the hash table

Programming Version 0.4 Page 68 of 356

69 As recently as 1994 I was working for a large financial firm who couldn't simply transfer
data from mainframe to LAN except in a batch operation using optical discs. Because of
suit-isms one particular job took ten days instead of 20 hours.

70 Sadly a true (but far from rare) case. Search for Fidelity and HP.

will tell you whether it is in there or not.
• The efficiency of hashing comes from being spot-on first time or at least very close

which means an even distribution of hashes and spaces.

[13] Containers
When you put your bags of shopping into the boot of the car you are nesting containers.
Other things might go in the boot, but perhaps not an elephant(size limitation) or a
bucket of water without the bucket (unsuitable container.) Somewhere, somehow
information gets put into containers of a logical type (arrays for example) which are
eventually stored in physical containers (disc drives, RAM chips) for example.

In the 80's and 90's there were
enormous strides taken to tackle the
size and suitability issues. Chopping
information up and later reassembling
it is now done as a matter of routine. In
Ye Olden Days any data larger than
360K bytes had to be split using a
proprietary program across floppy discs69. Nowadays data is split into packets for
sending over networks.

There is another aspect to suitability: Privacy and security. As a Real Programmer you'll
need to study the techniques and be a champion of stopping up all the leaks. Only a
suit would gaily put 196,000 real personnel records onto a laptop and only realise after
the event that it could get stolen.70 Security will be discussed in detail in a later
chapter. You lock the boot of your car don't you?

[14] Tell me what you are little thing
When Mummy's Little Helpers come to help unpacking the shopping they need to
recognise that a cauliflower doesn't get put away with the cornflakes and the milk goes
in one place and the bleach in another. This task would be impossible if there were no
labels on the tins and packets. Sometimes the item will say "store me in the freezer".
Other items rely on them being what they are and you knowing that say grapes go in
the fruit bowl.

You could go on a computer programming course and never have anybody tell you that
just like all real things are made of atoms but when joined together in a certain way
become a mushroom or a walrus, so bits (in the 0's and 1s sense) are joined together in
different ways to make different information things and we need to handle the 'thing' as
a 'thing' not as a collection of atoms or bits. Trying to wordprocess a video file or
spellcheck a photograph is pointless and it won't work.

This is why files tend to tell us what sort of file they are by their file extension. Not only
do they tell us but they tell the programs that work with them as well. That is only one
example of how a bit of information is able to tell us what it is. Many things contain a

Enlightenment: Why is data sent over
networks split into packets rather than
being sent in a continuos stream?
Because the streams would mingle and
you'd never be able to untangle them.

Programming Version 0.4 Page 69 of 356

71 Actually that's a lie - Have a look at some source.

72 That's 4 bytes in hexadecimal. It's the signature of a Word Perfect file.

signature: HTML files start with <HTML>71 All my word processing files start with FF 57
50 4372

As we'll find out in the next chapter some can say "best before foo" and "here is how to
cook me".

Review
What we've covered in this chapter is an introduction to the ways of organising data. It
is more important that you understand the various possibilities and their strengths
rather than trying to program these yourself. Nowadays the majority of programming
will pass by most of this most of the time... except that efficient data storage and
retrieval is fundamental to good programming. Whenever you have a bunch of things to
manage you have to chose a system... but so many tools are ready and waiting for you
to use that you normally don't try to re-invent the wheel - just fit the right wheel to the
right vehicle.

Physical data storage
As you know data is stored using different physical media. Also there are virtual ways
of storing data such as in a cache, 'somewhere' on a network, in a database. There are
two things a programmer needs to be aware of when dealing with various forms of
storage: 'Cost' of accessing it and accessibility.

Cost
By cost we don't usually mean money, but time and memory. For example if you wanted
to sort a pack of cards you could do it very quickly by laying them out in a pattern on a
large table. If you didn't have a table you'd need to juggle back and forth between two
handfuls and a knee. The really slow way would be to fetch two cards from a box,
compare them, and stick them back with a marker, then take another two out, look at
them and so on. The slow way to sort files in a filing cabinet is to sort the files
themselves, the fast way is to go through the files once making a list of the names then
sort the list of names to make an index. Similar considerations apply to electronic data.
 When we look at algorithms we'll see there are some methods that get a result faster or
with less shuffling of data than others. Although using an inefficient method can be
very inefficient, (orders of magnitude) on the top of every programmer's agenda is how
long does it take to get at a bit of data. Because having a look on a hard disc takes so
much longer than having a look in random access memory a programmer will be careful
to access data on hard disc in the most efficient manner possible. Cacheing is one
way. At the supermarket you go and fetch all the items, then go to get them checked-
out. Imagine the situation where you went to a till with one item, had that checked-
out, then wandered off round the shelves for the next item, had that checked-out, then
went and found the next item. This isn't just inefficient but so seriously inefficient that
it makes the supermarket concept unworkable. The same applies to taking items out to
the car - you wouldn't do that one item at a time. Neither would you access data over a
network like that.

This difference between a practical system and non-starter is quite typical of some

Programming Version 0.4 Page 70 of 356

73 Look up ISAM - Indexed Sequential Access Method for more about how the 'right spot'
was determined.

74 You'd have thought this was history now...

75 And the data is often cached transparently for us by the operating system.

76 See glossary entry on New Line for details and traps

applications. As a programmer you will always be thinking of the efficiency even if
most of the time it is a red herring due to huge memories and fast processors. But note
that in server applications where there may be dozens of copies of your program
running together you need to keep a strict watch the possibility of running out of time
and memory resources.

Accessibility
If you want to find the ace of diamonds in a pack of cards that is really easy if they are
laid out in front of you. (Cost=1). If they are in a deck you have to work your way down
looking at each one in turn (Cost=26 on average). The first method is random access
the second serial. In Ye Olden Days all data was stored on magnetic tape. Imagine
taking some items out of stock using a stock system: Read through tape to get to right spot - see if
any/enough in stock - rewind a bit - rewrite new stock amount - rewind a bit - check the tape has recorded the correct

information. 73 That's why the processing was saved up until the evening when the ins and
outs would be sorted into the order they were on the main stock tape so it could run
through in sequence. That's the explanation for why the computer would say "there's 10
in stock" but the shelf was empty.74

Nowadays when data is on a disc we can often jump to any spot we like to save this
palava.75 Data flowing across a network, or between cooperating programs is a
different matter. Not only can we not even 'rewind' but we generally have no control of
how long and possibly in what order the data is going to arrive! When your web
browser asks for a page from a web server it hopes, eventually, to get the whole of the
HTML document which it looks at and then asks for all the other bits and bobs that it
needs to fill out the page such as style sheets and images. It will send a host of
requests for these items off to the server then wait with no knowledge of which will
come next or how long it will take. If all you wanted was the 1st image you've got to ask
for the whole page and may have to wait for the whole thing to download.

Files
You know what a file is. Basically a long stream of bytes written to a disc. Those bytes
might be organised to represent a picture, bank account, error log, personal
preferences, seat reservations or anything.

Although behind the scenes the computer is probably treating all files in the same way,
there are two practical ways for accessing files - our friends serial (called sequential)
and random access. The main advantage of reading or writing (By the way normally
only one of these at a time) to a sequential file is that you don't need to keep track of
where you are. If you like "you are where you are". Often sequential files are arranged
as text, one line at a time.76 Suppose you want to write an error message to a log: All
you have to do is say stick this new line onto end of error log file. To do this
with a random access file you'd need to know how to find the right place to put it and
make sure the data you were writing wasn't too big for the record.

Programming Version 0.4 Page 71 of 356

77 Which it might well be. When the operating system reads a bit of a file it will probably
end up caching much more than you access. So the next 'read of the file' is really a 'look in
RAM'.

78 The How-long-am-I is often missing if it isn't needed but it is useful for picturing the
structure.

79 'Serialising' comes later when you know about objects.

Record?
If you want you can access individual bytes of a random access file. It is much more
usual though to store groups of bytes. Such groups are called records. You say
something like fetch a stock record from position 123456. You might have
defined a stock record as say An unsigned 32-bit integer for an ID, then a 16-bit integer
for the quantity in stock, then 30 characters for description then four bytes for single
precision real for the unit price. 4+2+30+4 = a block of 40 bytes. All records have this
fixed length of 40 bytes.

If all you had in this file were stock records then the first would start at position 0 (offset
is the usual term for position here), the second would be found at offset 40 and the nth at
position 40 * (n-1). If you had an array in memory of which stock ID was which 'n' you
could access the required record in one hit. Or perhaps you hash the stock ID to get 'n'
thinking that should be near enough.77

Mixing records
In a sequential file you will often get lots of different records joined together. The way
this works is by indicating at the 'head' of a record what sort of thing it is and how long
it is78. The 'how long am I' bit can then be used to tell where the next record starts by
the simple expedient of adding it to the head position (ie offset) of the current one.
Obviously to get to the 77th record you have to start at the top and do 77 of these skips.
This may seem a drawback but in practice, for the sorts of thing these files are used for
it isn't.79

Random access files are often made up of various sections and sub-sections.
Somewhere at the top might be a table of offsets to the various parts. (You can only say
what these offsets are when you've written those sections.)

The most general type of random file access requires an index. This is a compact set of
records which match the key being wanted with the offset. Then there is no need to
stick to fixed lengths to do the how-do-I-find-it sums.

Abstracting I/O
It is worth noting that you may not be
dealing with real files as just described
at all. One way to 'cheat' is to use a
database program which keeps track of
everything for you. I/O is the all-
encompassing term 'input/output'
which refers to any data flow.

In Ye Olden Days I/O would include as a
matter of course keys pressed and
characters typed on a teletype and later
VDU console. These would be sent down
a wire character by character. Nowadays
the console might be built-in to the
operating system. Look up console¤

Programming Version 0.4 Page 72 of 356

80 Real world as in keyboard and screen.

81 If you think that's ridiculous, consider how a fork-lift operator in a large warehouse picks
pallets from many long aisles, stacked 10 shelves high. One of the first uses of business
computers was to convert a 'mixed lorry load' into a set of instructions for a fork-lift driver
to fetch items in as short a journey as possible.

Streams
A very important concept is a stream. In simple terms, this presents the programmer
with a serial source or sink for bytes to be read from or written to regardless of whatever
the actual storage being used is. This applies to networks, discs, and communications
between cooperating programs.

This is important because a great deal of input and output (and internal processing) can
be made to look like a stream. This standard interface makes it easy to isolate the
program from that strange and uncertain place: - The rest of the computer, the rest of
the network and the real world.80

• FileStream? What's that? It's a Stream. A Stream is a 'pipe of bytes'. A Stream is a
very common abstraction used to interface with 'data storage'

@@@ More on streams??? (elsewhere?)

Conclusion
If you thought computing was all about number crunching then you might still be right
(for certain applications) but now you know that these numbers are organised in certain
ways to make manipulating them efficient. Next time you go to the supermarket stop
to think what would happen if say trollies didn't stack inside each other, how much
space would that take? What would happen if there were no labels on the tins? What
would happen if the shelves were arranged in one long aisle and you were picking your
list in the order on your paper?81 And how many mistakes would you make if you had to
remember precisely where you parked your car. Just think : Supermarkets would be
impossible without the shopping trolley.

You'll need to spend some time understanding the limitations of physical storage as
well as the logical aspects in order to be a competent programmer. For most people
this means a little bit of experience and a lot of vigilance - knowing where major 'costs'
can occur should put you on the alert for gross inefficiencies. (Ignore the minor ones.)

I've been rather coy about data, bytes, records and silent on objects. Stand by for more
eye-opening stuff as we look at ...

Programming Version 0.4 Page 73 of 356

82 Pshaw! Quite right: A character is not a byte as will be explained in a couple of
paragraphs time.

83 A lot of information seems to evaporate. Some people blame Gremlins, but in out heart of
hearts we know we didn't look after it carefully enough.

7. Data gets intelligent

Introduction
In the previous chapter I was a bit vague, referring to 'things' and using tins of beans as
a metaphor with the clear implication that 'thing' could mean anything. In this chapter
we'll nail down these 'things' in a computer context - and see that they can still mean
anything. We'll be talking about objects.

You may have heard the term 'object oriented programming' (which everyone shortens
to OOP or just OO) and you may know somebody who can quote the three holy tenets of
OO. :Persistence. Inheritance. Polymorphism. That's all very good stuff - but I want you
to think 'objects' not spout the mantra.

Before proceeding, I expect some of you are asking "what about databases and web
pages and client-server and bots and frameworks and image manipulation and file
formats and applets and games" and so on. Don't worry we will get to 'useful' and
'commercial' all in good time. This chapter will be as fundamental to your programming
as perspective is to a painter: It is obvious, there all the time, and there are ways to
make the illusion work seamlessly.

Tiny objects
The smallest computer object we can
have is a bit: 0 or 1 in binary, a high or
low voltage, the presence or absence of
an electrical current, a tick or a cross, a
left or right and so on. That single one-
of-two bit can be
• indicated in many ways and
• interpreted in many ways.
Most programmers will be insulated from the need to worry about how bits are
indicated (but don't relax, indication will become very important shortly) and it is the
interpretation by a programming language which 'knows' how to interpret this as True
and False which we then use in our program for pass/fail, up/down and so on.

The next smallest object in common use is the byte or character82. A byte is a group of
8 bits. Bytes are the currency of computing. Data is banked on your disc in bytes
(typically 512 at a time), jingled in RAM (often 4 at a time), exchanged over the Internet
(in any amounts), stolen, minted, defaced and lost behind the sofa.83 For the record
there are 256 possible combinations of 8 bits which are normally interpreted as 0...255

OO experts will be going "pshaw!" and
starting to foam at the mouth here. Well
thinking of all things as objects is the
name of the game. Later it will emerge
that some objects are whizzier than others.

Programming Version 0.4 Page 74 of 356

84 Nobody cares what the letters in this acronym stand for. This may be a surprise to some
of you but having a universal standard for which number meant A (65 decimal by the way)
and so on was such a good idea that IBM kept on using its own, different version. Now
history repeats itself with Microsoft trying to promote its own err.. 'standards' for Open
Document Format.

85 In UNIX-world a end of line is traditionally indicated by LF. Elsewhere by CR and LF.
This can cause confusion, particularly if you get a standard routine to do reading and
writing of lines that get swapped with other systems.

86 Parsing means splitting up into tokens(mostly words). Whitespace is frequently used as
one of the splitting methods. Thus fireSPACEalarm reads the same as fireTABalarm and
fireSPACESCRLFPACETABSPACEalarm.

(or 0...FF in hexadecimal, or 0...ff case doesn't matter with hex. Sometimes you will see
hex numbers flagged as being hex by a preceding '0x'. so 0x10 would be 160 decimal.)
Of the 8 bits one, called the least-significant-bit, will indicate 1's, the next 2's, the next
4's and so on to the MSB (Most significant bit) which indicates 128's. Sometimes there
are variations on this theme which will be pointed out to you in any documentation. It
might say "flipping bit 0 will alter the read-only flag". That's the LSB you'll have to
switch from a 0 to a 1 or 1 to 0 while leaving all the other bits alone! There is an
appendix on this subject.@@@

There is a standard way to interpret a number between 0 and 127 as a character of text.
This is ASCII.84 127 can fit into 7 bits, with the 8th originally used for parity. (See the
glossary for more on parity and its legacy.) As well as the alphabet in upper and lower
case, numerals and some common symbols such as the ones we've seen in code,
characters 0 to 31 were given special meanings mostly for controlling communications.
These are called control codes. The ASCII control characters you need to know are:

Name DecHexEscaped
NUL Null 0 0
Tab 9 9 \t
CR Carriage return13 0d \r
LF Line feed 10 0a \n
ESC Escape 27 1b

• NUL is extremely important. A lot of strings, sometimes called Unix-style, indicate
their end by a NUL stuck on after the last 'real' character. This is no problem so
long as you remember that when a string says it is 6 characters long it actually
needs 7 bytes to store it.

• When reading documentation you may also see CRLF which probably means CR
followed by LF.85

• There is no such character as EOL/End of line/newline. This very important marker,
which is used quite a lot, might be CR, or LF or CRLF.

• Space is 32 decimal or 0x20
• Whitespace refers to any number of consecutive space, tab, CR and LF (and

normally all control) characters. Whitespace is often important when parsing86

data.
• The Escaped column shows common shorthand used in many programming

languages to allow you to indicate these control characters easily. For example
print("Tab\t\t9\t9\t\\t");

should give you the relevant line from the above table. ("\" in this context is known
as the escape character. How then do you get a backslash? Normally by doubling
it.)

Programming Version 0.4 Page 75 of 356

87 I used to be able to read most HP printer escape codes. A ten character string of a bit of
this and tweak that and adjust the other was normal! For this book I tried to work out
how I'd do a superscript but it was so horribly complex I gave up. Be safe, don't waste
your life like me boys and girls - stick to ready made printer drivers.

• The ESC control code is one of those communications symbols. Nowadays you are
unlikely to come across it, but in Ye Olden Days we'd send things like
NormalESC(s1SItalicESC(s0SNormal (where ESC is the single escape character) to
get print "NormalItalicNormal" on the printer.87

More characters
Having only 96 usable characters is a bit of a limitation. The 8th bit was pressed into
use in various ways, sometimes to draw lines to make boxes to line forms on character-
based screens and sometimes for accented and novelty characters such as ©,È and è
not to mention £ and ¢. This is fine for many English-centric uses but is a bit hopeless
if you want Russians or Japanese to be able to use your program in their own language.
So the only way out is to use more than one byte for a character. Now you see why
'character' usually means 'byte interpreted as a bit of text' but sometimes means 'one or
more bytes interpreted as a bit of text'. More modern programming languages have
support for Unicode, older ones don't. Unicode can represent anything including weird
mathematical symbols.

Larger built-in data items
We have already discussed types (Chapter 2?@@@) and discovered different types
needed different numbers of bytes to contain the information. I could send you a file of
100 32-bit integers using exactly 400 bytes. (Or of course 100 bytes if I knew all my
numbers were small enough and I was mean about file size.) What happens when you
read the first number: Read first four bytes as a number is probably built-in to your language.
With any luck my program with its WriteANumberToFile() function uses the same
convention for physically writing bits and bytes to the file as yours does for reading.
But it may not be the case. There is a standard @@@ but it's not much good stamping
your little feet if the data source isn't using it or your programming language doesn't
support it.

Real numbers work in the same way. If you know that the next n bytes are a binary
representation of a certain sort of floating point number just call the appropriate built-in
function.

Strings come in three varieties:
• Fixed length where somebody has specified there will always be n characters

assigned to a particular string
• Null-terminated of variable length which you have to read a byte at a time until you

reach the NUL (zero)
• Specified length where one or two bytes at the front tell you how long the string is

and therefore how many bytes to read.

Programming Version 0.4 Page 76 of 356

88 Just to remind you (I know it was only a page ago) that newline is a concept that may be
physically represented in up to three different ways. Every programmer worth their salt
will check that their built-in readln() actually works with the data they're given as the first
thing they do with the data.

89 Somebody will tell me about a language where strings are limited to 254 characters or
some similar limitation. In which case I'm wrong - But if you're writing such long lines
you've probably got the wrong file format.

The really dumb amongst you can try
mixing these types and see what
happens.

Lines
There is a really easy way to deal with
textual data within sequential (often
referred to as text) files. Write one
thing (or set of things) per line. This
format is used a lot by configuration
files and there is no reason why for non-
binary data you shouldn't use it yourself
if you want a format that is easy for other programs or humans to read. Most (but by no
means all) programming languages have a function that will read a whole line (ie up to
the next newline88). This is a really great format for logs and reports, configuration files,
some data files, and not least program source files. Actually a lot more file formats
such as email and HTML use it as well. See if your chosen programming language has
readln() and writeln() functions for starters. If not there may be other ways of doing the
same thing.
• Lines of text can only contain err... text. (No control characters anyway)
• Lines of text can be of any length.89

• In all the text files I've encountered one byte=one character.

Here is an example from one of my files
Background bitmaps
===
This file lists scans from maps with background images
Field 1 : Level Smallest number gets drawn first.
Larger numbers will paint over smaller ones
Field 2 : Filename BMP file
Field 3 : Map ref South West corner
Field 4 : Map ref North East corner
The map refs are formatted as grid square followed
by two Km values eg TL 56 70 or TR 5.8 77.2
NB Do not use commas to split these three parts up

Example 10,BackGnd.bmp,TL 20 20,TL 40 40
10, bg001.bmp, TL 70 00, TL 90 20
50, bg002.bmp, TL 71 15, TL 75 20
50, terling.bmp, TL 76 14, TL 80 18
40, cressing.bmp, TL 76 19, TL 80 23
50, ayroding.bmp, TL 57 14, TL 61 18
50, sailing.bmp, TL 70 23, TL 74 27
51, send.bmp, TL 80 18, TL 82 21
60, cretem.bmp, TL 78 17, TL 80 20

Hex Editor
How do you find out what the byte and
character values are within a file? Use a
Hex Editor. This will normally list 16 bytes
per row both in hex and also as a
character. I can recommend you looks at
some binary files (don't change anything!)
to get a feel for how this tool works. Later
you can use it to see what happens when
you write something to files of your own.

Programming Version 0.4 Page 77 of 356

• # is one of the common conventions for a comment
• There isn't a bit of binary in this file. The program that reads this (It is written by a

human - so that's a good reason for avoiding binary) has to read character 1 then
character 0 and turn that into 10. That's normally very easy.

• A bunch of data items is called a record.
• The parts of a record are called fields.
• The way to load this data into a program is Read line. Split into fields using comma as a marker. Try to

interpret each of the four strings in whatever way is appropriate. If all fields could be interpreted OK then report thumbs-
up!

Fields and records are key concepts. A record is a self-contained, pre-defined collection
of fields. Each field is a data item. (And to make it a little more confusing) A field could
be a record in it's own right. In fact the example given illustrates this where fields three
and four, which are map references, are comprised of three elements grid square,
Easting and northing with whitespace as a field delimiter or separator.

You will often come across configuration files where each data record takes the form
foo=bar. In this case there are two fields delimited by the =. (Normally the first is
referred to as the key and the second the value.)

Binary records
If my computer is talking to yours directly, or you're storing data for future use then all
this conversion from text to binary and vice versa is a bit of a bore. No problem, just
specify a bunch of fields in a group and treat them as one unit. Here is Delphi code that
illustrates how map references might be packaged.

 MapRef = record packed
 Square : string[2]; // 3 bytes (2data+1length)
 East : single; // 4 bytes
 North : single; // 4 bytes
 end; // 11 total

Suppose I wanted to emulate the previous text example in binary I can nest my MapRef
type inside a BackgroundBitmapSpec as follows. (Recall how in the previous chapter we
had items in containers inside other containers - tins of beans in bags in the boot - here
is the electronic version.)

 BackgroundBitmapSpec = record packed
 Level : byte; // 1 byte
 BitmapFile : string[60]; // 61 bytes
 TopLeft : MapRef; // 11 bytes
 BotRight : MapRef; // 11 bytes
 end; // 84 total

• Delphi aligns fields on even bytes unless you explicitly tell it to squash them
together. If packed was left off then Level would occupy 1 byte plus a spacer to
bring the start of BitmapFile to an even byte. Why should we bothered? Because if
we are exchanging data and we publish the specification of which bytes in a record
represent which parts of the record we could forget these spacers.

• Fixed length strings alert!
• A typical method to indicate 'part of' or 'field' is to use a period. So the Square field

of the BotRight field of a variable called bbs would be
bbs.BotRight.Square

• Records are really complex custom built data types and are used in the same way.
var
 bitmapSpec : array[0..6] of BackgroundBitmapSpec; // dimension
. . .

Programming Version 0.4 Page 78 of 356

90 Not usually given these names. Also not necessarily a file - could be a stream.¤

for i := 0 to 6 do begin
 read(myDataFile,bitmapSpec[i]); // read next 84 bytes
 if not fileexists(bitmapSpec[i].BitmapFile) then(error)
end;

• This last bit of code assumes there are always exactly 7 records. Unlikely! A very
common way to deal with this is to write the number of records then the records
themselves. When reading the first thing yo do is discover how many records are
following and allocate and loop accordingly.

In a short while we'll talk about types that know how to do things for themselves.
(Objects). Two common function which may be built-in to your language are
WriteMyselfToFile and MakeMyselfFromFile90.

Review
So we can make our own types and have discovered how to make them persistent.
Persistence means we can store them and recover them later. We can still use built-in
types and text files of course but the future is objects. When working with binary files
use a Hex Editor¤ to check that everything is in exactly the right place. File formats
change without anyone telling you and your programming language may write in a
slightly different way to that used by somebody else to read.

Objects
Problem: Many languages do not
support objects. If in doubt look up
'constructor' in your documentation. If
it doesn't appear then now might be a
good time to look for one that does. A
lot of programming can be coded
without objects but unless you are
fluent in 'object-think' you won't know
what is and isn't suitable. On the other
hand, Java is a mainstream example that forces you to use objects.

Recall the groceries being unpacked when you got it home from the supermarket. All
the packets and tins had labels which told you things like weight, fat content, how to
store, how to cook and so on.

Terminology note
So far we have been talking about types and fields. At some stage we've got to convert
to the exact same things by other names: Types become "objects" and "classes" (Mostly
interchangeable terms). Fields are still "fields" plus "properties" (which for now we'll say
are the same as fields) and a new component "methods" which are functions specific to
an object. Watch out as we segway¤ into this new tech-speak.

The code given below is pseudo-code. You won't see any actual code like this but you
should be able to translate this into the object fields of your preferred language.

Usually you get a special chapter on
objects. The concept is extremely
important and we'll be getting you
immersed in them in subsequent chapters
but the principles are simple enough to
grasp quickly.

Programming Version 0.4 Page 79 of 356

Inheritance
We could define a type called TinOfBeans with fields Weight, Barcode, Nutrition, and
Contents. We could also define a type called PacketOfPasta with fields Weight,
Barcode, Nutrition, and Contents and a type called Pizza with fields Weight, Barcode,
Nutrition, and Contents. What a bore! Instead we could define one type to cover all of
them

GroceryItem
 .weight : single
 .barcode : string
 .nutrition : BlahBlahText
 .contents : string

So far so simple, we're just setting up a general type to cover all grocery items. What
about tins and bottles. They say what material they are made of which isn't allowed for
in GroceryItem. We could either add that to our general type and put up with it being
irrelevant in many cases or, this is the important bit, develop a more specialised type
from the general type. The specialised type will inherit all the general type's fields and
add some more of its own.

Container inherits from GroceryItem
 .material : MaterialType
 .recycleInstructions : string

Container objects now have these two additional fields.

Similarly
FrozenFood inherits from GroceryItem
 .storageInstructions : BlahBlahText
 .howToCookFromFrozen : BlahBlahText

and
Tin inherits from Container
 .doesTopHaveRingPull : Boolean;

WCPGW? We've forgotten 'Best before date'. Watch this magic. All we have to do is
add a .bestBefore : Date to GroceryItem and all the classes and all the inheriting
classes will have it too.

Functions of objects are also inherited.

Constructors
Our GroceryItem is an abstract concept - a class of things not a particular instance. To
create an actual instance of an object we need to construct it. The function used to do
this is called a constructor. Once constructed we can set the properties.

tinOfBeans = new Tin()
tinOfBeans.material = Steel
tinOfBeans.bestBefore = "May 2006"
tinOfBeans.doesHaveRingPull = False

• One widely used naming convention is to use lowercase to start instance variable
names and uppercase to start class names. Here we can tell Tin is a class and
tinOfBeans is an instance at a glance.

There are two styles of naming constructors. Some languages give you a ready-made
function name such as Create() to use, while others recognise the class name being
used as a function. Here are examples

Programming Version 0.4 Page 80 of 356

91 Remember this isn't working code - it is generalised and simplified. Your preferred
language will have its own syntax.

92 Actually a function of a class but we won't worry about the distinction for a while yet

Java Tin tin = new Tin();
Delphi tin := Tin.Create();
PHP tin = new Tin();

A constructor is a function and as you recall functions can take arguments. Let's define
a constructor function for GroceryItem. Here is the sort of thing you might see:91

function GroceryItem(Grams,ID,Contents){ // constructor
 weight = Grams;
 barcode = ID;
 this.contents = Contents;
}

• My personal convention is to Capitalise function arguments.
• We don't normally need the leading dot (NB assuming dots are used - some have

other symbols to indicate 'component of object') inside the function when referring
to an object's fields.

• The last line untangles a potential confusion between 'contents' the objects field
and 'Contents' the function argument. this is a common way of saying 'this
instance of the object'. Sometimes self is used for the same thing.

Since a constructor is a function of an object92 and functions are inherited we can use
the GroceryItem constructor to create a Tin instance. In fact we may never want to
create the skeleton GroceryItem at all, always sub-classing it to make useful objects. A
class that never has instances per-se is called abstract.

Lets see how this bit of code works
tin = new Tin(100,"123456789","Baked beans")

new tells me to construct a new instance of a class. It will be a Tin object. What's that? Do I have a constructor for it?
No...But it may have inherited a constructor function from the parent class. Oh dear no constructor function for
Container...But it may have inherited a constructor from its parent. Yes! Here it is and it wants three arguments (which I've
just been given - that's OK) Set the weight field to 100, Set the barcode field to "123456789" and set the contents field to
"Baked beans". Wrap everything up as a Tin object and finish.

Just as we added to the fields of GroceryItem to develop a Tin so we can add additional
layers of functionality

// constructor for Container
function Container(Weight,Barcode,Contents,Material){
 parent.(Weight,Barcode,Contents); // Grocery item bit
 this.material = Material; // special bit
}

// constructor for Tin
function Tin(Weight,Barcode,Contents,Material,HasRingPull){
 parent.(Weight,Barcode,Contents,Material); // Container bit
 this.doesTopHaveRingPull = HasRingPull; // special bit
}

Now we can construct a more comprehensive Tin
tin = new Tin(100,"123456789","Baked beans", Steel, False)

where a chain of constructors called. Tin calls Container which calls GroceryItem.

Programming Version 0.4 Page 81 of 356

Methods

Methods mostly work on instances. (As opposed to constructors that worked on the
class - to create an instance.) Is that tin of beans past it's best before date? Since best
before dates are not unique to Tins...or Containers...but are part of GroceryItems that
looks like the place to put a function which compares today's date with the best before
date. Here are a couple of functions ...

function HowManyDaysLeft(){
 // Assume DaysDifference and Today() are built-in functions
 return DaysDifference(this.bestBefore,Today());
}
function StillOK(){
 return (HowManyDaysLeft() >= 0)
}

...but how do we make these functions part of GroceryItem? HowManyDaysLeft() needs
the bestBefore field of a particular instance of an object and so it can't quite the same as
the functions we've seen so far which have been available for any bit of code to use
providing they gave all the required arguments. The answer is these functions are
defined inside the class.

Record Object
Name of type{ Name of class{
 any data fields go here any data fields go here
} any functions go here

}

Let's pick these two functions apart:
• Both are functions of an object. To save keep calling them "functions of an object"

we just say method. (We can then use function to mean a freelance sub-program.)
• In HowManyDaysLeft we access the best before date using the code

this.bestBefore. The "this" is unnecessary, but included to show you what is
going on. Obviously bestBefore refers to the data field of a particular object.
Err...Which particular object? Answer: The one the function was applied to.
if (not myTinOfBeans.StillOK()){ throw myTinOfBeans away
if (not anotherTinOfBeans.StillOK()){ throw another tin away

• In the StillOK method we call the HowManyDaysLeft method. Could we have put a
this. in front of the call? Yes, but in practice there tends to be less opportunity for
confusion between method arguments and method names.

Private data
Are you old enough to insert legal restriction here? Let me look at your record... Ah yes
I see you were born on the 4th of April 1961, so that's OK. Hold on! Isn't that a bit
personal? I don't need your date of birth all I need to know is are you old enough. Now
look at the two GroceryItem methods. StillOK() doesn't leak the best before date which
is exactly the sort of thing we want in the are-you-old-enough case. Data and methods

Functions of objects are called methods.

Programming Version 0.4 Page 82 of 356

93 Confusingly different languages may mean different things with the same keyword. It
always pays to study and get clear in your mind each language's implementation of
visibility specifiers.

can be given restricted visibility to implement this. Details vary between languages.93

We still need the separate HowManyDaysLeft() method for other purposes. (Perhaps we
want to sort items so that things that need using up soon are at the top.)

You will probably find that your methods tend to fall into two categories:
• Those that are based around 'how the object works'
• Those that make the object useful to the wider world
We'll see more of this later. For now don't be surprised to see method Foo() calling
method Bar() which calls method Buz(). You can see objects with long lists of methods
to give extra bells and whistles for external functionality that package a few core
methods.

Method variations
Suppose we have an object which is some list, a list of things to do perhaps we might
want to implement a method called AddItem(). Now what arguments should that
method take? We could start with a string:

method AddItem(string : OneString){ // takes a single string
 ... appropriate code goes here
}

That's fine, but what about adding a whole array of strings in one go
method AddItem(string[] : ArrayOfStrings){ // takes an array
 ... appropriate code goes here
}

When there are two (or more) variants with the same method name it is called
overloading. This might not seem much of a big deal with this simple example, after all
we could have called the second version AddArray(), but sometimes it is very
convenient to keep the number of method names down to a manageable number.

There is another style of method variation called overriding. A method is declared in a
parent class which is fine for the general case but can be replaced by a more specific
method - with the same name, so nothing needs to be changed. In our groceries
example we might have a generic method Open() which is reimplemented for bags,
packets, bottles and tins. If say Tin doesn't supply its specialised version then the
parent's will be used.

Review
We've got some more work to do before all the basics of objects have been dealt with,
but how far have we got?
• An object is a super-record with methods as well as data
• A class is the definition (where the methods live)
• An instance is a particular data record which can be manipulated by the methods

of whatever class the object is.
• Classes can inherit data definitions and method definitions.
• Instances are created using a constructor method

Programming Version 0.4 Page 83 of 356

94 It is comparatively easy to develop a special purpose language (example coming up much
later @@@) but building in object features is extremely complex.

• Data fields within an instance are specific to that instance
• Methods are defined in the class but operate on instances.
• Methods are handed down from parent class to child classes but may be overridden.
• Methods and data fields may be hidden from view

In the next part we'll continue looking at objects, but first a little bit of why they are so
important.

Object oriented programming
OOP required a new way of designing programming languages and a revolution in
thought. Even though a programmer would be writing the guts of a program in roughly
the same way as in a functional language the stitched together of the parts is entirely
different. In addition it changes the way programs are designed, the economics of
programming, the way in which separate modules are developed and reused. The two
snags are:
• Humans are not very good at juggling abstract objects
• Processors still need old-style lists of instructions
There are type of language where OOP is not relevant: Scripting(eg shell), definition (eg
HTML, SQL) and special purpose languages.94 Also it is often tempting to hack¤ some
code together without the overhead of working out how classes interlock.

Components
So far it may not have become apparent that any program of any size consists of
components, probably many that operate behind the scenes. Even with HTML you may
get Cascading style sheets and Javascript scripts which are vital to the overall
presentation of the page in a browser. You may be the one to program all of these
components, but in the main you'll be using ready-made bits off-the-shelf, or bits that
have been entrusted to somebody else to build and test while you get on with your part.
Here are the important questions :
• Do you need to know the internal workings of those components?

No.
• Do you need to know how to use them: What they do and how to make them do it?

Yes.
Recall that I said you'd find your methods will tend to separate into those that did the
workings and those that interfaced with the rest of the program. See the same split?

Design
It should be easy to see that if your program is used for a application where there are
objects in real life that you can easily model these as electronic objects. Patient, doctor
(both sub-class of Person), appointment, medical record item, medical history,
medication, treatment, investigation (all three being subclass of action) and so on. But
there are less concrete objects: Risk, cost-benefit, patient's attitude. Also lots of small
helper objects : phone call, blood-pressure reading, contra-indication alert. Plus
background objects : Electricity bill, pharmacy stocks, qualifications and so on.
Strewth! What a nightmare - however is it going to be possible to computerise this lot -
just for a patient to see their doctor about an ingrowing toenail? If one thing is

Programming Version 0.4 Page 84 of 356

95 A = Application

96 This really is typical of the level of information you get from clients, large and small, unless
you really poke around and ask all those 'irrelevant' questions.

connected to another thing which is connected to others and others where will it end?

The answer is to define a limit - draw a boundary. But within that boundary? That's
why computer systems can be expensive, because when you begin to look at what's
involved, under the surface there's a lot more going on than at first appears. The OO
approach allows you to sketch on a piece of paper firstly the objects, secondly the
relations between them and thirdly the inner workings. (Thirdly being what the
programmer does a lot of.) It is often possible to 'zoom in' and 'zoom-out'. For example
from a patient's point of view they might just have symptoms, treatment and outcome
with some methods like go-to-the-doctor. Patient's history and other properties and
methods might be internal to the patient object.

Design is a subject that will get a more extensive treatment in a later chapter. For now
make sure you've got plenty of paper and some coloured pencils to draw the
components of a system in exactly the same way you'd draw the components of a bit of
machinery. Time spent on design is time well spent.

Programming Interface
Almost always called an API95 the specification for how to use an object is what the
user needs to know, and if you're a programmer making use of a wheel that's already
been invented then you are the user. How many times have you tried to make
something work but been frustrated by lack of instructions? The API is the knobs and
buttons and user guide for what happens if you press them for an object. Inside there
might be a maze of technological wizardry but the user doesn't need to know that, just
for example how to turn that bloody noise off!

All of the above are different ways of saying that objects have an inside and an outside,
a mechanism and a function. Depending on whether you are programming or
designing will affect which side you are on... ...but you have to connect the inside and
outside.

More on the technology of objects
Let's suppose you have a client who designs swimming pools. Part of the process will
be calculating the volume of water. You want to be able to say something like
aPool.HowMuchWater() to get the volume. Until you got involved with objects you'd
start by writing a function something like this:

function HowMuchWater(Length,Breadth,Depth){
 return Length * Breadth * Depth;
}

and submit your bill for prompt consideration. WCPGW? Your client is astonished that
you were not psychic and failed to divine that all her pools were not rectangular.96 OK
so now you're on your guard and you find there are circular, oval, rectangular and odd-
shape and the rectangular ones have a shallow and deep ends but the others might
have funny shaped bottoms. Groan!

Programming Version 0.4 Page 85 of 356

Lets start with the basic mechanism: The volume will be the area times the average
depth. This will be the same for all pools. (So this looks like being a method of Pool.)
Now what about sub-classes of pool? We can only work out the average depth in the
case of the rectangular with deep and shallow ends, the rest we need to be told the
average depth. What about the area? Circular pools: pi-r-squared, elliptical: Length
times Breadth times pi/4. Rectangular : Length times breadth. Odd shape : needs to be
given.

With this insight into how pools differ we can construct an object hierarchy as follows:
Pool

Rectangular
EvenlySloped
Elliptical

Circular
OddShape

• Elliptical as a sub-class of rectangular!! Why not? We need length and breadth.
• All rectangular pools have length and breadth
• An evenly sloped pool can calculate its average depth
• A circular pool has a single radius dimension ...

... but we may need to give the user a diameter property to avoid confusion.
• An odd shaped pool is beyond simple maths so we'll say the data we need (for

HowMuchWater() must be supplied.

All pools need a HowMuchWater() method. This implies they need (either methods or
data) for area and average depth, but hold on! A Pool object doesn't know these things.
Only the sub-classes have that information. It's like we're supposed to be inheriting
from our children.

Here is how the conundrum is solved: The Pool object proudly declares it will provide
the HowMuchWater() method but sneakily insist the sub-classes do the actual work to
deliver the data for the Area times Average depth formula.
• Parents can insist children must implement a method for themselves
• Children can override a parent's method...
• ...Either completely or augmenting it.

Here is a skeleton to illustrate, notes at the end.
class Pool{
 method HowMuchWater(){
 return Area() * AverageDepth();
 }
 abstract method Area();
 abstract method AverageDepth();
}
class Rectangular inherits from Pool{
 field length;
 field breadth;
 field avDepth;
 method Area(){
 return length * breadth;
 }
 method AverageDepth(){
 return avDepth;

Programming Version 0.4 Page 86 of 356

 }
}
class EvenlySloped inherits from Rectangular{
 field shallowEndDepth;
 field deepEndDepth;
 method AverageDepth(){
 avDepth = (shallowEndDepth + deepEndDepth) /2;
 return parent.AverageDepth();
 }
}
class Elliptical inherits from Rectangular{
 method Area(){
 return (length * breadth) * (PI / 4);
 }
}
class Circular inherits from Pool{
 field avDepth;
 field radius;
 method Area(){
 return PI * radius * radius;
 }
 method AverageDepth(){
 return avDepth;
 }
}
class Oddshape inherits from Pool{
 field avDepth;
 field area;
 method Area(){
 return area;
 }
 method AverageDepth(){
 return avDepth;
 }
}

• Methods to create the objects and get the necessary base data have been omitted.
• The 'language' in the code is my specially fudged one for clarity. You should be

looking at the documentation for YCPL and spotting the similarities and differences.
• class Foo inherits from Bar. This is revision. Notice where the block extends

to. It encompasses the fields and methods for class. Note the initial upper case
letter naming convention.

• Pool doesn't have any data fields defined. It promises to be able to deliver what is
asked for and that's all somebody using a Pool object (or sub-class of Pool) needs to
know. Any Pool object will be able to respond to the method call HowMuchWater().

• In fact we can never have any objects of Pool, only of sub-classes because some of
the methods have not been defined, they're abstract methods. They've been
declared but not defined.

• An object of class Rectangular can be instantiated because it supplies the required
definitions. It also has the supporting data fields.

• Class EvenlySloped re-defines the AverageDepth() method which was originally
defined in Rectangular (its parent class). It is overriding the parent's method....

• ...But then it calls the original method. (Walk-though coming up.)
• Class EvenlySloped used the parent's Area() method.
• Class Elliptical overrides the parent's Area() method. (Unlike when

Programming Version 0.4 Page 87 of 356

EvenlySloped.AverageDepth() also called the parent's method, here the method is
complete in itself.)

• Class Circular is similar to Rectangular. It can provide what is demanded of it,
namely the Area() and AverageDepth() methods, but its internal workings are
completely different to Rectangular.

• The OddShape class looks like a lot of work for a little result. Why bother with those
methods? Couldn't we just re-implement the HowMuchWater() method, overriding
the version in Pool to use the data fields directly? No. Firstly because we won't
have implemented the abstract methods declared in the parent. Second even if we
could, how are we to know that some other method won't need Area() and
AverageDepth() - possibly as the program develops at a later date.

@@@ could we have put avDepth etc in Pool obj?
Let's do a walk-through. Suppose we've

Created an object of class EvenlySloped
Called it es
Somehow given it the necessary dimensions

So now what happens when we execute the code
vol = es.HowMuchWater(); ?

es is an object of class EvenlySloped. Where is the definition of HowMuchWater()? Not in EvenlySloped... Not in Rectangular
either... Ah here it is in Pool. So let's execute the code:

We need the Area() method. Here it is... ...but No! Area() is an abstract method so we've go to go looking for it in the
child classes. Is it in EvenlySloped? No. Is it in Rectangular? Yes. So execute the Area() method:

We need the length field : (es inherited it from Rectangular)
And the breadth field : (es inherited it from Rectangular)
So do the sum and return the result.

We need the AverageDepth() method. Here it is... ...but No! Area() is an abstract method so we've go to go looking for
it in the child classes. Is it in EvenlySloped? Yes. So execute it:

We need shallowEndDepth and deepEndDepth from es. OK
Do the sum and save result in es's avDepth field (inherited from Rectangular)
Now find the parent's AverageDepth() method. OK so execute it.

Easy! Just return es's avDepth field
And return the result just given to us by the parent's AverageDepth() method.

Now we have the necessary results from Area() and AverageDepth() we can do the sum ... and return the answer to the
caller.

Phew! That was a lot of to-ing and fro-ing. The question in the back of your mind,
having seen the code which seems a lot for a little and the walk-through which seems a
maze of 'wrong department - you need to ask elsewhere' buck passing, is "Is this really
justified?"

The short answer is yes. It works well in practice. The reason it works well in practice
is that to use it all you need to do is call that one method and all the details are sorted
out. When you get into a car all you have to do is turn the ignition key to start it. One
method that works for all cars. In times past there were special starter buttons, crank
handles, running on petrol then changing to paraffin, plus a bit of shouting and praying.
Because automobile engineers spent the time improving the machinery you can now
reliably start any car. Also you can easily explain to somebody else how to do it.

Information hiding

Programming Version 0.4 Page 88 of 356

97 Which can be frustrating if it doesn't work and you can't get in to find out why or try
bypassing, changing, testing or boosting something.

Nowadays most of the guts of a car are hidden away so you can't tinker with them.97
Admittedly the complexity of modern engine systems makes tinkering very unlikely to
succeed in fact almost certainly something will be put out of step with everything else
adding yet another problem.

The same applies to the data inside objects. We want to keep itchy fingers and prying
eyes out of our internal workings. There are two aspects to this:

Firstly as we've seen you shouldn't need to know how the object goes about its
internal business if all you're doing is using it.
Secondly we may want to take definite steps to control access.

Let's consider how we might validate dimensions given to our swimming pool program.
Remember that these dimensions will be used to work out the area of tiling, amount of
excavation, heat losses and other costs. If there is a loopy input to one of the
fundamental dimensions then there could be expensive trouble all down the line. (A bit
of WCPGW in practice there.)

One way of setting say the average depth is by coding like this
myPoolInstance.avDepth := 0.95;

WCPGW: What units are we using? What are sensible values? We could possibly ask
the calling program to check these but (a) that's only a please and (b) it is one more
thing for the user to consider that the object itself should know. Do you remember
those pointers in data structures that pointed to the next item and so on? What would
happen if these were tinkered with? Gloom! So it is vitally important that some
mechanisms are in a case marked "No user serviceable parts inside".

The other way of doing this is to have a method for setting the average depth which
does the necessary protection work.

method SetAvDepth(DepthInMetres){
 if ((DepthInMetres > 0.5) and (DepthInMetres<1.4)){
 avDepth := DepthInMetres;
 return TRUE;
 }else{
 return FALSE;
 }
}

So the object itself validates what it will and won't accept.

To finish this off we have to prevent outside code accessing avDepth.
• This is done by flagging the field with a suitable keyword
• Keywords depend on language ("private", "public" and "protected" are common.)
• Typically different amounts of hiding are provided for. You can restrict a field to a

single class, or that class and associated or make it generally available. The exact
details vary from one language to the next.

Same method - different arguments
Finally it ought to be made clear that most languages allow you to specify methods that
take different arguments but still use the same name. For example we might have a

Programming Version 0.4 Page 89 of 356

98 For some light computer lore going back to at least 1959 look up "blinkenlights".

method HowMuchWater() and another HowMuchWater(Units:String). The
documentation would tell us that HowMuchWater() with no arguments assumes cubic
metres, but we could use the alternative form with an argument of "gals", "m3", "ltr" or
"ft3" to get a result in gallons, cubic metres, litres or cubic feet. (Have you guessed what
the definition of the no-argument form is? HowMuchWater("m3");

Review
Another chapter comes to an end. We started with the storage of compound data fields
as a package. Then the breakthrough of adding functions to types to make them
classes with methods, inheritance, information hiding and polymorphism. (That's a
jargon word for different ways of executing the same method depending on what sub-
class is involved. HowMuchWater() is an example.@@@ Check this@@@)

There is a barrier to getting stuck-in to objects which you may be feeling at this very
moment. There is a lot of thought, organisation and foundation building to be done
before you can run a program. This 'bottleneck' of 'hope this is right' and the long wait
before 'the lights start blinking'98 soon becomes easier to bear after suffering the
'millstone' of 'what's going on here - and why does it sometimes go wrong' that plagues
programs written from the hip.

Programming Version 0.4 Page 90 of 356

99 If you were a suit you wouldn't need this. But as a programmer with your nose to the
grindstone, crystal sharp vision and strict adherence to logic you occasionally like to sit
back and let the details dissolve into a warm rose-tinted glow.

8. Progress review
I am hoping that you are keeping up your practical studies using YCPL. You can whisk
all the way to the end of this book without touching a keyboard but you'd be better off
re-reading what we've done already. Knowing what you know now will make it all so
much easier and the details (and fudges) will become clearer.

In the next chapter we will write a whole application using the programming
knowledge gained from this book and the language knowledge you've acquired from
elsewhere. This should be a useful exercise in the slog of programming to get a
working application. The less you're looking forward to head down programming,
consulting the manual and debugging the more valuable it will be. If you're already a
whizz at doing OOP in your chosen language then simply reading it may be sufficient.

After the close up on code we'll step back to look at databases. Then a bit more on the
essentials of good programming practice that I've been missing out. Then some wider
issues surrounding programming and programmers.

AND_RELAX
- If you didn't see this coming when you went to the supermarket
- all those aeons ago then you're not yet thinking like a programmer.
- As well as WCPGW think: "What could possibly be better".
0. With kitchen
1. glass = kitchen.cupboard.Find(Glass)
2. corkscrew = kitchen.drawer.Find(Corkscrew)
3. bottle = kitchen.winerack.Find(Bottle)
4. corkscrew.Open(bottle)
5. bottle.Pour(glass)

Cheers!99

Programming Version 0.4 Page 91 of 356

100 I'm making Fudge up as I go along.

9. Let us code

This is a hands-on chapter. You will need:
• To be familiar with your development environment
• Be familiar with the basic coding syntax of YCPL
• Have written some example programs in YCPL and got them to work
• Be using a language that supports OOP
• Be using a language that supports reading and writing to files
• Be using a language that supports interactive on-screen applications
And to have read and 'be happy' with all the preceding chapters.

We will develop a diary application which uses the minimum of display and interaction.
At the very least you need to be able to display a list on the screen (diary dates
overview), get some input (add/edit item), provide controls for selecting a diary item and
overall actions such as save to file.

One of the reasons for having this chapter is to get you familiar with common practical
programming features. So far we've skipped all mention of user input and display and
fudged the storage of data. You need to know how to do these things. It may be
difficult to learn for YCPL given the documentation you have to hand, in which case get
better study materials! Don't expect to learn this list of requirements in just an hour.
Sorry, but if it was easy then everyone would be doing it. You can't be a programmer
without slogging through lines of code and examples that look straightforward in the
book but complain when you try to get them to work. It will be hard but that's because
your fingers and brain are not used to it. One day soon it will get a lot easier and you'll
be able to concentrate on the interesting bits of programming.

Code in this chapter will be written in Fudge. Fudge is a language for humans that
looks close enough to a computer programming language to make conversion into
YCPL straightforward. We've already seen it in chapter 7.100

Design
The normal way to design things is to
discuss what you want to do, get a feel
for the nature of the beast, where the
critical points of failure and bonuses of
goodness might be, and before you
know it you'll have a bunch of
component parts. This is the top-down
approach which works from the general
to the specific.

Designing is like those matchstick puzzles
where you have to get a shape by moving
only three matches. You can stare hard
and look at the 'obvious' way without
success. At some stage you need to back-
off and preferably discuss what you're
trying to do with somebody. Sleep on it to
play with the possibilities.

Programming Version 0.4 Page 92 of 356

You'll also be thinking of technological issues which may need resolving. For example
what will the screen look like, how will you verify users, will it run fast enough, what
method should you use to store the data, how will it integrate with X, what happens if
we want other-language versions? This is the bottom-up approach which aims to
provide the critical modules (or at least prove they are feasible, and how much they will
cost) from which the application will be built.

Somewhere in the middle these approaches meet.

Then you review the design, preferably after a few days of ignoring it. Try and get an
experienced person to review it with you - the more experienced the better. More on
this in a later chapter.

Application specification
The diary will display a list of dates for which we have 'something on'. It will
distinguish between weekdays, weekends and public holidays and be able to name
days of week and names of public holidays. As well as the typical reminder and holiday
entries it will have a facility to indicate shift work. For example 4 days on 2am-10am,
rest day 4 days on 10am-6pm rest day 4 days on 6pm-2am etc. Diary entries can be
created, edited and deleted. A facility to spot clashes (eg 'Doctor 11am' when doing the
daytime shift) would be useful, as would being able to automatically fill in a set of days
shift pattern.

DIARY_TOP_DOWN_DESIGN
0. With lots of paper
0.1 Different coloured pens/pencils may be helpful
- There will be lots of sketching, re-drawing etc.
- This is normal
1. Draw boxes for the components in the diary
1.1 these will become your objects
1.2 give the boxes names
2 Experiment with an object hierarchy (sub-classing anyone?)
3. List the data fields inside each object
4. List the methods this object will implement
5. Make side notes about anything you think about

DIARY_BOTTOM_UP_DESIGN
0. With notepad, development environment and manuals
1. Sketch the user interface as you imagine it would appear
2. List the display and interaction logic
2.1 Sketch the various activities in bubbles
2.2 Joined by links marked edit, delete etc
2.3 Review 1.

Programming Version 0.4 Page 93 of 356

3. List what file operations will occur
4. List any particular bells and whistles you envisage
5. For each of the items listed in 1. to 4.
- Looking at Risk (5.1) and Resources (5.2)
5.1 Will that be easy, hard or don't know to implement
5.2 Will that take a lot or a little time implement
6. For each of the items marked as hard or taking a lot of time
6.1 Is there an alternative, easier, simpler approach?
7. For each of the items marked as don't know
7.1 Experiment with some actual programming to discover how to do it.
7.2 If it still looks difficult look at 6.1
7.3 If it is impossible then change the requirement or change language
8. Collect your conclusions into a short, easy to read list with the key

functionality listed.
- The object of 8. is to form a plan of work for your many minions (ahem)
- to go off and beaver away at ready for you to use in your top-down
- inspired program.

See I told you this chapter would be
hands-on and difficult. This is
programming. It isn't the sort you get
in Learn YCPL in 3 days. It will take
months before you're fluent at design
and even then it's littered with many
unknowns, complexity and really
interesting possibilities that won't quite
lie down. Personalities and technique
come into it a lot. Above all, give
yourself time and always sleep-on-it.

My top-down design
I have left some bits out so we can see how logical making alterations to the code is for
'oh I didn't think of that' and 'that would be a good idea'. I have added some bits in we
won't be implementing - but please feel free to enrich the application yourself.

Choices

DIARY contains:
an ordered list of DAYs
a file or filename for reading and writing to
possibly some configuration for colours, layout, date and time formats etc.

We'll stop in the middle of DIARY because there is another way:

In my opinion a lot of poor design stems
from two things:
1 : Skimped design. (F/note@@@ Watch
out for spending more time on fancy
design tools than basic ideas.)
2 : Lack of practice. Get into the habit of
reaching for a bit of paper every time a
task appears on the horizon. In the early
days, say the first year, do that even if you
know the task isn't yours - you'll be able to
compare and learn.

Programming Version 0.4 Page 94 of 356

DIARY is a sub-class of ordered list
The list items are DAYs
Extend by adding fields for
a file or filename for reading and writing to
possibly some configuration for colours, layout, date and time formats etc.

Is one method better than the other? It depends. One way to decide is to ask are you
trying to make 'a better version of the class' or just using it as a component.

• Perhaps in this case the first method is simpler and more appropriate.
• However DIARY might be a sub-class of some other object which is good at

showing itself on the screen. That could come in really handy.

Ready to reuse components
Suppose you already have an ordered
list class, or a list that is sortable. If
that class knows how to read and write
itself to file you already have a lot of the
functionality for the diary object. It is
fairly likely that YCPL does have such a
class ready to hand or you can make
one easily. If you have to make one
then it will be really useful in the future
for all sorts of things.

Data picture so far
DIARY : Mostly a list "DAYS" with configuration bits
DAYS : List containing DAY objects
DAY : Data fields for date, and special day name
How do we connect the ENTRY objects (eg Time, duration, note) into the system?
• We could have a separate list of ENTRYs if each had a date, then process that list

(say in date order) to give the diary listing.
• Or we could put them inside DAY as required so that each day is a self-contained

object
There isn't a correct answer. For example if we were linking this to a database with an
events table probably the first solution is best, but if we want our data to be contained
like Russian Dolls inside our objects then the second. As we are doing our own storage
we will use the second, list of lists, approach.
DAY : Data fields for date and special day name

Sortable list of 0 or many EVENTs

Methods
DIARY : Load and save from/to specified file

Display list of events (with range of dates)
Provide user controls to (initiate) select, add, and edit ENTRYs
Possibly provide a way to alter configuration settings

Notice 'display list of events' doesn't say how. The mechanism is going to be hidden
from the user and will be delegated as follows:
DAYS : Load and save to/from file

Add and delete DAYs

Code reuse is one of the primary objectives
of all programming.

One of the requirements to make this work
is for code to be self-contained. OO code
meets this criteria quite well. (Another is
can you find the stuff when you need it?
We will cover this sometime.)

Programming Version 0.4 Page 95 of 356

Sort
Enumerate¤.

Nothing about displaying a list? Err...well that is sort of covered by enumeration. It will
work out all right when we get down to code.
DAY : Load and save from/to file

Display (self and/or EVENTs)
Edit public holiday name
Add / remove EVENT
Provide facilities for user to add, edit and delete EVENTs
Tell date
Tell if weekend, weekday or public holiday
Tell if any EVENTs
Tell if any clashes of EVENTs

This is getting a bit more like it. Obviously DAY is going to be a major component
EVENT :Load and save from/to file

Display
Tell start, finish and duration

That's enough top-down detail for now.
• The ordered list class gets used twice
• File I/O (Input/Output - Reading and writing - Loading and saving) keeps on

getting delegated. We will investigate this in a moment.

My bottom-up design
1 What is the display infrastructure?
2 File details need to be clarified
3 Inputting data and editing items is going to be a bit tricky
4 Dates are always slippery : We have to add 8 hours onto 6pm...
5 Is an ordered list class ready to hand?
Some of these I can only make a stab at because your system is likely to be different
from mine. Nevertheless let's have a go and see where we get.

1 What is the display infrastructure
The simplest (and most universal) we can think of is a list of dates/entries down the
page. If possible we want a delete/edit/add button or selecting ability for the items.
We need some general controls.

• Console
(A console interface is a glass teletype¤ Output is sequential lines of text. Input is
typing at a keyboard.)
• We can print a list of dates easily, but could get stuck if the number of lines

goes off the top of the screen.
• We will have to give a list of commands such as Save, New entry etc.
• ...and perhaps number the entries so we can say something like Delete 16

• Web page
(A web page is not very interactive but has improved layout and facilities.)
• We can easily list events in a table. No worries about losing entries off the top

of the screen as web browsers let us scroll.

Programming Version 0.4 Page 96 of 356

• We can put Delete and Edit buttons/links against each entry
• Overall controls will need to be buttons/links
• Getting some inputs will need to be done using forms.

• GUI
(A Graphical User Interface allows control of the presentation and interactive
capture of mouse and keyboard.)
• GUIs are often set up by a visual programming environment. This would

speed the work of organising, painting controls and capturing events.
However the simplicity of the application should allow us to do these by-hand
quite easily.

• Separate child windows for adding and editing entries.
• Input and selection should be straightforward if using predefined controls.

2 File details need to be clarified

The way we'll use the file is to read in
all the data at the start, run the
program then save any changes at the
end.

Do we need this file to be
• Human readable?
• Machine readable?
• Accessed by multiple applications?
• 'Live'? (Contents could change by
outside influence when we're using it.)

These issues are a summary of quite a
long detailed list which we'll come back
to in a later chapter.@@@?

Human readability would be a bonus,
especially for a first application where it can be really helpful to see what's going on
and tweak the file by hand. But since you can't join the programmers air-force without
doing some loop-the-loops we'll say machine only binary. We don't need any other
application to read or write our data. (And if we did we might be able to reuse our
objects to do that.)

• If the object class in YCPL supports serialisation¤ you're laughing. If not you're
going to have to write read-me and write-me methods for your objects.

We could base our data file name on the program name or give it a fixed name or allow
the name to be specified on the command line¤. Let's do the latter, but say that if no
command line argument is supplied we'll use "diary.dat".

3 Inputting data and editing items is going to be a bit tricky
Why? Because user interfaces vary so much as just discussed in 1.

Object substitution
Suppose your diary project was to be
implemented on a number of systems you
could write a Display object to get the
program working on your development
system and then have alternative versions
to swap-in. The majority of your program
is blissfully unaware of any changes as it
still uses the same API to talk to the
display. Or your part of a project will be
using an object which somebody else is in
the process of developing. In the
meantime you could write a fake version
that is enough for you to do some testing
until the real version is available.
• You can see the importance of defining,
documenting and sticking to the API.

Programming Version 0.4 Page 97 of 356

101 Better still just a single keystroke.

And also because we need to be able to pick items to edit.

And also we need to be able to validate input and report validation problems.

And also because we will be doing different tasks at different times. Sometimes
browsing the list of events, others editing a particular event, others asking for a
particular selection of events. (eg When am I going to the opera?)

You need to be able to
• have a way of selecting an item to edit/delete
• to add/edit an item's details
• report data input errors
• take commands like save changes

One way of clarifying what will be happening is to list (or draw boxes) the separate
functional aspects of the program. (In this case List events, add/edit item, delete item,
load/save data, sort items, control display.) How do these fit on a virtual screen? For
example 'load data' may be automatic ... put perhaps needs a progress bar... or a
dialogue box to ask which data file to open. You will see that the functions begin to
separate into logical groupings. You've seen this happen in practice when for example
you interrupt your spreadsheet figure-work to play with a graph.

Just because you have a number of separate functions doesn't mean they have to go
onto separate 'pages'. For example your diary might have an events list on one part of
the screen, a menu and a details display/edit area at the top of the list. There is an art
to getting the right balance between flipping between screens and having too many
different functions on one page. (Programmers are supposed to be able to deal with
complexity and want a work bench with everything just a single click101 away. Don't
take the clutter of an IDE as a model for general applications.)

Now, in a different colour, indicate where actions happen. For example "Save and exit"
against 'Finish' button. As you do this you'll probably be thinking about the controls
you'll be providing for user interaction as you go. Don't be afraid to remove or add
controls. (If, after a while you still can't decide you probably need to step back and have
a fresh think.)

There is a clever way of writing in the actions that result from an interaction. What
would the pop-up hint say? What could be simpler.

In some applications where there are
complex procedures set in motion you
probably need to either refer to (or
write) a full description of what
happens. This ought to have been done
at the top-down stage though so if you

Design is closely associated with systems
analysis. The top-down needs good
analytical skills, the bottom up needs
people who can create useable user
interfaces and take the time to check that
the details of what's proposed match real-
life experience. (Beware - They never do.)

Programming Version 0.4 Page 98 of 356

102 We might also be working on sample data or test cases in order to prove the system. More
later.

find yourself doing this that's an alert to revisit the top-down design phase.

4 Dates are always slippery : We have to add 8 hours onto 6pm...
I've written an appendix @@@ on the subject of dates and times. You should read that
then consult the documentation for YCPL. Most systems bundle date and time in
together so 'all you have to do' is add (1440 * 8) seconds to work out the end of an 8 hour
shift given the start date/time. In all events you need to experiment with adding X time
to Y date/time to get Z date/time.

Now you'll want to display the date and/or time. Generally you'll find there are ready to
use functions for this which need a little fiddling with. You'll need to track down the
documentation and try a few experiments.

5 Is an ordered list class ready to hand
Yes. If it isn't built-in
you'll be able to
snatch one from the
Internet or use the
same functionality
from say built-in
sortable, extendable
arrays.

Review
So we've looked at the overall concept and broken it down into the assemblies that we
need to make it work. We started with ideas like "list the dates" then refined them into
"a date lister object which does X and contains Y and delegates Z to Y" (Top-down)

Then we investigated the practicalities of sourcing the parts and would they be suitable
and do we have to modify them. This involved looking quite closely at how the program
would interact (with a user in this case) and ensuring we have the competence to glue
everything together.102 (Bottom-up)

That's taken a long time!
By now we could have coded the whole
thing! Well actually you'd have typed a
lot of code and some of it may have
done something. Whether the options
were fully investigated, whether you
used the right object model, whether
you selected the right way to deal with
dates and many other 'whethers' are a
matter of speculation. It is very

Roll your own list.
That's a good exercise because it is so simple, so basic and
such a good exercise in how bugs grow. For now we can use
something ready made, but working with lists of various
sorts will be necessary if you're going to have the confidence
to stitch together complex data structures...
...and to be aware of what's possible a few years down the
road when you suddenly get something out of the ordinary.

Collect a good set of tools for the design
job. Something like:
• Paper, coloured pens
• A filing system
• Time to look at alternatives
• Confidence to question assumptions and
investigate details
(More later.)

Programming Version 0.4 Page 99 of 356

103 When we look again at design in a few chapters time we'll add a bit to this.

tempting to wallow in cutting some code. The pressure to see something on the screen
is enormous. But you're not in a sprint, and if your colleagues have rushed off in a
lather of code just ignore them. They will be the ones puffing and panting at the end or
who fail to finish the job to a reasonable standard while you sweep up on the outside in
full stress-free control, knowing where you're going and how far it is to the finishing
tape.

At the end of the design phase you should be able to
• explain what your proposed system will do
• explain how it does it
• identify a list of tasks to be done
And, to the sound of arms being twisted very hard up backs, how much effort it will
take.103

So let's build the application
Because you are working with YCPL in your environment it is not possible for me to
give you precise instructions. However we have a set of components that we can all
build which means there is a framework for a plan of work. In this case I'll work from
the outside inwards. In all cases I'll make the very basic functionality work before going
on to details. If you feel the need to adapt and enhance please do so.

The syntax is whatever seems easiest to follow. Normally the code would be
commented to explain the object and its methods but as you know what's going I'll let
you add those yourself. YCPL probably has some conventions for this which are worth
reading about.

Diary object
DIARY contains:

an ordered list of DAYs being the
a file or filename for reading and writing to
possibly some configuration for colours, layout, date and time formats etc.

class Diary
fields
 days : DayList ; // will list the days
 fileName : string; // won't be read/written to file

constructor Diary(FileName:string){
 Diary();
 LoadFromFile(FileName);
}

constructor Diary(){
 // [possibly call inherited constructor here]
 this.fileName = 'diary.dat';
 LoadFromFile();
}

Programming Version 0.4 Page 100 of 356

method LoadFromFile(){
 if (FileExists(this.filename)){

 fileStream = new FileStream(this.filename);
 days = new DayList(fileStream);
 }else{
 days = new DayList();
 }
}

method LoadFromFile(FileName : string){
 this.filename = FileName;
 LoadFromFile();
}

method SaveToFile(FileName : string){
 this.filename = FileName;
 SaveToFile();
}

method SaveToFile(){
 fileStream = new FileStream(this.filename);

 days.SaveToFile(fileStream);
}

method Display(){
 days.Display();
}

}

Let's halt there and have a few words about the code.
• Reminder : My naming conventions are to start with upper case for

• Class names eg DayList
• Function arguments
These are not the same as Java where the convention is to use capitalisation only
for class names.

• YCPL may or may not be case sensitive. Even if it isn't, make an effort to work as if
it is. Not only will it save you grief if at some stage you encounter a case sensitive
language but it will help you almost sub-consciously recognise the significance of
names.

• The constructor Diary() and methods LoadFromFile() and SaveToFile() are
overloaded. This is a very common feature of OO code. (Some OO languages
practically insist you have a no-argument constructor.) Notice also how the
versions with arguments call their no-argument versions. This is usual. You tend to
call the inherited constructor and alternate constructors before fleshing out the
object.

• "this." is given for clarity. You need to be clear about the rules YCPL uses to
identify object field names and others.

• How does the Daylist object know where to display itself? Good question. It may
be that there is some method accessible to DayList objects (and their components)
that is provided by the system and taken for granted or which they can call on at
will by 'reaching out of their box' to access some part of the environment. In Java
graphical display has to happen via a Graphics object which would be available to
the main program and is passed to all components that want to draw on it. Also in

Programming Version 0.4 Page 101 of 356

104 See the review for an important note. ??@@@

Java, StdOut is accessible throughout all parts of the program. Thus with Java the
programmer has a major choice to make: Cheap-n-cheerful command line or all-
singing GUI with additional overhead. In the GUI style the method calls to
components would be passing the object to display with and also need to keep a
note of it for itself and to be able to pass to its components in turn.104

• Hold on! LoadFromFile() doesn't really do anything except call the constructor of
the days list. This is correct. There is no other data that the Diary needs to load so
it gets the days list to do its own loading. When you think about it which object
knows more about loading the list of days - the days list of course, so that's where
the method goes. This hand-me-down method style is extremely common in OO
code. We'll see it used in saving and displaying also.

• FileStream is an assumed version of a stream opened on a file for reading. Streams
were introduced in chapter @@@ and you should have had a look in the
documentation for YCPL to get the details.

• So WCPGW with the LoadFromFile(no argument) method?
The file might exist but not be readable (For various reasons such as we don't have
permission, it is a directory or it is broken in some other way.) so that The
FileStream construction process fails. How can we deal with this?
(a) Some way of testing and taking avoiding action?
 Or
(b) Trapping the error if it arises and taking remedial action?
The general answer is "a mixture". 'Prevention is better than cure' but very
'expensive'. We try to foresee and test for error or abnormal conditions, but
sometimes we must deal on the fly with runtime errors. The classic runtime error is
divide by zero. The "sine of the angle between Tuesday's high tide and the length
of the rhubarb patch minus the number of Aunt Augusta's bunions giving her gyp"
is unpredictable and could be zero - so we might elect to handle the exception,
should it ever arise, by trapping it.

YCPL will have its own way of handling run-time errors. Possibly some
construction that looks like

try
 something
except
 handle exception

This is called exception handling and it is vital you know how it works, how to deal
with awkward spanners in the works of your code from a 'how do we handle this'
point of view - and also how to generate a sensible error message for human
consumption if that is required. Run-time errors tend to be called exceptions.

• WCPGW with the file stream? Something! There is always the small risk of not
being able to access (or send/store) data.
• Does this matter? Probably yes. Suppose for example that your program

writes its data to a removable disc drive before shutting down. You system
may be being shut down and in your rush to go off to the pub you take out your
disc...
... and your program being closed down by the system waits, and waits, and
waits. Or it gives-up and reports an error message that is displayed for a

Programming Version 0.4 Page 102 of 356

105 At least with a modern language.

106 A reboot might clear a file lock, but some times you're on the phone for ages trying to get
some poor user who has never seen a command line to delete certain locking files without
doing collateral damage.

107 Also you should start to recognise the mistake you make every time Doh! - Putting in traps
to detect your blind spots is a salutary lesson.

millisecond on the screen. Either you get very thirsty or you lose your changes
without being aware of it.

• Can we catch it? If we want to.105 Probably by more try...except
• W else CPGR with the file stream? What LoadFromFile() does is open a file and

line it up ready for reading. Then we get the days list to read itself from this file
stream. Job done? No. We haven't closed the file/file stream after we've finished
with it. Is this a problem? Quite possibly. It is standard practice to make sure that
every resource you
program borrows for its
own use is eventually
freed so that it becomes
available to the rest of the
system again.

So we add in a line at the end of our LoadFromFile() method will close the file
stream.

• WCPGR with closing the file stream at the end of the method? What happens if
there is an error in the middle of the days list being read? The program crashes
and never gets a chance to close the file. Bearing in mind we are probably trying to
solve one problem, we don't want another piled on top. A snowball turns into an
avalanche. In this situation there might have been some transient failure but then
the operating system has booked-out the data file to the program that crashed
(locked it) and so it isn't available until a reboot.106

Modern languages have a construction like
try
 do something
finally
 tidy up

Doesn't it just get harder than you ever dreamed of? Especially if you have done some
computer programming already you may be feeling the strain of all this WCPGR to the
nth degree. Well, yes it is a bit of a strain thinking of everything up-front... ...but it will
soon become second nature to put in safety-nets.107

Just like athletes don't fall over or give-up because when you can't see them they're
training, training, training so if your programs don't fall over the reason is because you
too are working out of sight on the less glamorous graft.

In practice it isn't too bad. It beats dealing with strange faults over the phone for which
you're probably not getting paid, when you haven't looked at the program for a year, and

The terminology releasing resources is:
• Objects and memory are freed
• Files and network connections are closed

Programming Version 0.4 Page 103 of 356

108 True story : "Your program won't print" says a customer from a national engineering
research centre to me. Eventually it turns out, after checking version numbers, operating
system, doing a walk through and other frustrations that the printer isn't connected to the
mains, there is no light on, they don't know where the on-off switch is. Important note:
Most users have the technical knowledge of a cuttlefish - if that. There will be some
words of wisdom at the very end on this subject. Q:H@@@ow many Essex policemen
does it take to switch off a TV? A: More than two.

109 More about the very important subject of exceptions in a later chapter.

when the customer is not equipped to solve the problem even if they could describe it to
you.108

method LoadFromFile(){
 if (FileExists(this.filename)){

 fileStream = new FileStream(this.filename);
 try
 days = new DayList(fileStream);
 except
 raise Exception("Prob with" + this.filename);
 finally
 filestream.Close();
 }else{
 days = new DayList();
 }
}

Look again at this code for the LoadFromFile() method.
• try says protect this block of code by assigning exception handlers to it.
• except and finally define exception handlers which catch exceptions
• raise throws an exception. (YCPL might use the keyword throw.) What's this:

Creating more exceptions! Actually we are catching one and throwing another and
so passing the error 'up the stack' to for the caller to catch. If we didn't do this
some file error message would be passed up, now, (if we can't deal with it) we can
tailor the message.

Exceptions propagate up the calling stack with each function passing the error back to
the caller and so on, until the main program is reached in which case there is generally
some unpleasant technical message called a stack dump or just "error 123 at 123456".
As a programmer you can't stop something going wrong, but you should be able to
make it a soft-landing - one which doesn't involve you in technical support calls.109

Back to the keyboard
Your plan of work should be in two phases:
1 Put exception handling into Diary. You will need to look up the subject in the

manual for YCPL.
2 Develop a Diary with absolute minimum functionality (for the time being) so we

can exercise what we've got and weed out those bugs.

The main program
Somewhere you'll have to write a program that calls Diary. You know how to write this
program because you've had practice, not least in chapter @@@. The guts of this will

Programming Version 0.4 Page 104 of 356

probably be (as written in Fudge)
d = new Diary();
d.Display();
d.SaveToFile();

Some programming languages insist you write this in a separate program file and
'know' where to find it, others let you write write separate code files if you wish but
need to be told to include the separate file by name, others allow you to mix main
programs and objects together. Whatever happens you need a filing system, it needs to
be rational, reliable, inclusive and backed up. See the filing system appendix for more
on organising a code base.

Will it run?
Just for the fun of it what happens if you try and run your main program. We know it
can't possibly do anything because we haven't got a working Diary object. You should
get to the stage where the Daylist object can't be found. We did this exercise so you
can begin to associate the various errors being reported with the various problems with
your code.

Daylist
DAYS : List containing DAY objects
Let us make a Daylist object.

class Daylist inherits from SortableList{
 // No no-arg constructor - use parent's

 constructor DayList(Fstream : FileStream){
 SortableList(); // call parent constructor
 //@@@ reading file will go here
 }

 method SaveToFile(Fstream : FileStream){
 //@@@ writing will go here
 }

 method Display(){
 //@@@ display will go here
 }
}

Hey what a swiz! None of the really useful stuff! Have you seen the hucksters
operating the three card trick? What could be easier than finding the queen out of three
cards as dealt in front of you? Answer: Finding the queen when there's only one card!
What we're doing is taking one step at a time in the same way - in a sort of find the bug
game. If there's a bug then it must be under the new card because we've previously
eliminated all the other cards.

• @@@¤ is a convenient tag to tell us we must come back here to finish off.

• SortableList is an imaginary class. With any luck you should have something
matching this built-in to YCPL or easily available.

Add some temporary "I'm here!" message code to these three methods:

Programming Version 0.4 Page 105 of 356

• If you are using StdIn/StdOut you might want to put some 'StdOut' message at the
head of each method.

• If you're using a GUI likewise a place-marker progress message.

So incorporate this spavined DaysList into your main program and run it. In a perfect
world the program runs, possibly displays three messages from the methods in
DisplayList and finishes without errors. Back in the real world it is up to you to weed
out the typing errors, other mistakes, get a grip on tricky bits hidden in corners of the
manual and at last have a working program.

By the way, the box on the right is a reality check for experienced programmers.
Programming always takes longer than you think. Don't worry about it: Five minutes
spent at this stage will work out to fifty minutes of debugging saved and five hours less
of dealing with problems when the users try it out.

Hurrah!
You now have a working program as a scaffold on which to build more functionality.
An experienced programmer would probably have coded all the objects in one go before
sticking them together because they would be making fewer mistakes and also not be
phased by the complexity of the interactions of the methods.

Finishing off DaysList
The load and save methods are obviously 'mirror-images'. Whatever format we chose to
save needs to be compatible with loading.

Persistence shortcut
Persistence is tech-speak for making a permanent copy. This is what we are doing, and
of course is such a common requirement that you'd have thought it would be built-in to
all objects as a matter of course. We'll you might be surprised that many OO languages
are a bit hesitant about it.

The process of converting the internal representation of an object into something that
can be written to a file is called serialisation. To read an object from a file you'd
unserialise it. By the way, in general, serialised objects are not portable between

Note for experienced programmers. If you have
been reading without coding so far here is an
exercise for you.
1. Write down an estimate the time it will

take you to get this program working to
this level, including how much of that
time will be spent from notional 'finished
the code' to actually getting it to work.

2. Do it.
3. How realistic were your estimates?
4. Write down where you were rusty,

forgetful or sloppy.
5. Pin up your self assessment somewhere

where you can see it for the next week or
two and reflect upon it.

Programming Version 0.4 Page 106 of 356

110 Some languages can provide protection against saving a an object, updating the class
definition then reading the 'obsolete' data.

111 The complete nesting of all objects within a containing object is called a Graph in tech-
speak.

112 Technically it may be a sub-class of object - all objects will be.

different programming languages or even dialects.110 Use it for private storage of
working data rather than publicly shared information.

There is a nifty wrinkle to serialising which is when an object serialises itself, as well as
saving things like the class name and ordinary variables, it then serialises any
component objects and so on. Unserialising works in reverse. 111

Have a look in your documentation now because this will be an ideal use for
serialisation.

Home made serialising.
We'll look at the saving method before loading method.

 method SaveToFile(Fstream : FileStream){
 Fstream.WriteInteger(this.itemCount);

 for(i=0; i<this.itemCount; i++){
 d = this.GetItem(i); // Day object
 d.SaveToFile(Fstream);
 }
 }

• I've assumed a file stream knows how to write a given object to itself. In YCPL this
will probably be a little more complicated.

• YCPL will probably want telling that d is a Day object.

The joy of object inheritance
The code

d = this.GetItem(i); // Day object
is quite interesting because we haven't said the SortableList is dedicated to listing Day
objects. What will certainly be the case is that YCPL's version of SortableList will have
a method GetItem(i : integer) (or similar) which returns an object. Is d in our code an
object? Yes.112 In this case d inherits from the great grand daddy class of them all
Object. So there is no problem using SortableList for storage.

When it comes to retrieving an object from a generic container in this way we might hit
a snag. .GetItem() returns an object of class Object but really of course it is some fancy
sub-class. How do we tell the program that the collection of bytes just handed to you is
a certain class of object? (In our example a plain object doesn't know how to
.SaveToFile() itself.) Some languages are clever enough or don't check but others need
telling. This is called casting. When one type is shoe-horned into another (for example
byte to 32-bit integer, or byte to character) or when an object has to be treated as some
particular class you cast it. Rules apply! See your documentation.

Programming Version 0.4 Page 107 of 356

Load from file
So easy! Just a mirror image of SaveToFile().

I've rolled (possibly wrongly - you
decide) LoadFromFile() into the
constructor with the file argument.
(Remember that the no-argument
constructor uses the parent's
constructor.)

constructor DayList(Fstream : FileStream){
 SortableList(); // call parent constructor
 count = Fstream.ReadInteger(); // how many items follow
 for (i=0,i<count,i++){
 d = new Day(Fstream); // read and construct
 AddItem(d);
 }
}

• AddItem() is an inherited method which 'in some way' adds an item to the list. the
'in some way' refers to the matter of sorting which the list might do as each item is
added.

• Exactly how we read/write days is delegated to the Day class.

Display
What should we put into the Display() method of DayList and what should be delegated
to Day? DayList really needs to control the arrangement of items as each Day can't
really be expected to pry into it's neighbour's affairs. Also we might be setting some
overall parameters for display both content (eg filtering, sorting) and presentation.

Let's establish a simple allocation of screen space which will work with StdOut as well
as GUI.
• We could have a global header section for title and messages etc.
• A table headers section naming columns for tabulated output.
• A row by row item section for Days
• Assume we don't need anything at the base of the tabulation of days
• But we do want a global footer.

The old style of programming this would be to write all this code together in one
function, but the more modern idiom is to write separate functions, these functions are
of course methods of DaysList.

This illustrates one of the central
dilemmas of programming: To go for
compact and efficient code or slightly
more long-winded but explicit code.

Extremes are bad.

Delegation is one of those things that people feel is a good idea but somehow can't
let go immediate control. Obviously this applies to human relationships, but it also
colours our judgement when splitting tasks between objects and their components.
Perhaps there is some deep-down belief that smaller 'low status' components
shouldn't be trusted with responsibility.

Programming Version 0.4 Page 108 of 356

method Display(){
 DisplayHeader();
 DisplayColTitles();
 DisplayDays();
 DisplayFooter();
}

Why code like this? Surely all we are doing is putting off actually writing some useful
code. Where is all this nest of method calling getting us?
• We are quite likely to want to fiddle around with the global header. So it makes

sense to package it up in order that each time we tune it we can focus on only that
task without having to worry about masses of other things in adjacent code.

• The same applies to the other methods. In particular DisplayDays() because we're
probably going to start with a simple 'list everything' approach but refine it later.

• If we are going to print more than one page (perhaps on paper), or break the diary
up into segments of weeks or months we can imagine a layout which goes:

Global header
Column titles
First block of dates
Column titles
Second block of dates
...etc...
Global footer

For which we want to get at the column titles method as a separate entity.
• And we mustn't forget that the Display() method itself is very easy to understand.

Method visibility
The Display() method of DaysList that needs to be made available for other objects to
use. In tech-speak we might say "The Display() method is exposed so it can be invoked
by other objects." But do we really want for example DisplayColTitles() being invoked
from outside? No, because (a) there is no need and (b) there might be interactions with
the other methods which need to be carefully managed. For example in this example
DisplayHeader() might set up a column layout which is necessary for DisplayColTitles()
to work.

OO languages have ways to restrict the visibility of methods and data fields. There are
tricky variations so you need to read the documentation for YCPL. private is a
common key word used to indicate that the method (or field) can only be seen 'from
within' the object. Java insists you use the public keyword to allow other objects to
access methods and fields - defaulting to private.

You will probably find the visibility specifiers tricky to use to begin with. You can get
particularly knotted when transferring from one language to another as their schemes
have subtle variations on an already confusing base.

private method DisplayHeader(){
 PrintLn("Diary listing");
}

I'm going to assume a StdOut interface and use the Fudge Print(foo) to send
something to the display and PrintLn(foo) to print and go to a new line.

Programming Version 0.4 Page 109 of 356

private method DisplayColTitles(){
 PrintLn("dd mmm yy | Time | Event");
}

private method DisplayDays(){
 var d : Day;
 var i : integer;
 for(i=0;i<this.itemCount;i++){
 d = (Day)GetItem(i);
 d.Display();
 }
 // any finish code at the bottom of table goes here
}

private method DisplayFooter(){
 PrintLn("A=Add, S=Save, D=Delete, E=Edit, X=Exit");
}

• Notice that even without the comments that should be in the code you can see
what each method is doing.

• var d : Day; is a bit like the variable allocation statements you'll probably be
using in YCPL. It is generally a good idea, and many languages insist on it, to say
up-front what variables you will be using in a function and what type they are.
99% of the time variables declared in this way are local to the function. This is a
Good Thing because it avoids say the same i being used for multiple purposes. If i
is declared in more than one function then each i is separate. See Scope¤.

• The (Day) in d = (Day)GetItem(i); is an example of casting which we discussed
above.

• In a GUI based application we'd be doing much the same thing, except having to
do some more intricate manipulation of the drawing surface. If we were outputting
HTML you can probably imagine we'd be doing much the same thing but wrapping
the text up with tags.

• The user input hinted at in DisplayFooter() is something to think about. How are
we going to get the user's commands? Which of our objects should be looking out
for X being pressed? The Diary itself. The same with S. It looks like the Diary will
have to field all user requests and if necessary pass them down to specific objects
(say to edit a Day). At the moment we have made no allowances for any of these
communications.... ...something we'll fix after polishing off Day.

Day class

class Day{

A common frustration experienced by beginner programmers is not being able to
access 'global' variables from within functions and methods. Don't be tempted to
cheat if you have a cheat mechanism, it is really unlikely that you should be doing
that. See Passing by reference in the glossary.

Programming Version 0.4 Page 110 of 356

 field dd : integer;
 field mon : integer;
 field yyyy : integer;
 field hh : integer;
 field min : integer;
 field event : string;

 constructor Day(D:int,Mon:int,Y:int,H:int,Min:int,Event:string){
 this.dd = D;
 this.mon = Mon;
 this.yyyy = Y;
 this.hh = H;
 this.min = Min;
 this.event = Event;
 }

 constructor Day(D:int,Mon:string,Y:int,H:int,Min:int,Event:string){
 monthNum = Calendar.GetMonthNumber(Mon);
 Day(D,monthNum,Y,H,Min,Event);
 }

 method SaveToFile(Fs : FileStream){
 Fs.WriteInteger(this.dd);
 Fs.WriteInteger(this.mon);
 Fs.WriteInteger(this.yyyy);
 Fs.WriteInteger(this.hh);
 Fs.WriteInteger(this.min);
 Fs.WriteString(this.event);
 }

 method LoadFromFile(Fs : FileStream){
 Fs.ReadInteger(this.dd);
 Fs.ReadInteger(this.mon);
 Fs.ReadInteger(this.yyyy);
 Fs.ReadInteger(this.hh);
 Fs.ReadInteger(this.min);
 Fs.ReadString(this.event);
 }

 method Display(){
 // major fudge coming up
 Print(this.dd this.mon this.yyyy);
 Print(| this.hh : this.min);
 PrintLn(| this.event);
 }
}

Lets pick the bones out of this:
• I've chosen to keep the parts of the date and time separate for ease of explanation.

Normally I'd be using some ready-made date and/or time object.
• WCPGW with the first constructor? How about arguments such as the 77th of the

13th 93 at 7:77? Oops! No validation. Do we need validation? Yes - always. With
special sharp-spiked, high-voltage validation for user inputs.

Validating dates is a pain, fortunately most languages have date routines much
like this one which build and validate a date from the parts. Would it be possible to
hi-jack this in some way? Yes. See below.

Programming Version 0.4 Page 111 of 356

Class methods
• Look carefully at what is going on here:

 monthNum = Calendar.GetMonthNumber(Mon);
monthNum we'll assume is an integer being the result of the function? ...err...
method? that follows. Hold on! What exactly is Calendar? From the naming
conventions it appears to be a class not an object. How can that be? Surely the
whole point of methods is that they work specifically on the fields of a given object.
This isn't an object but a class which is an abstract collection of methods without
any concrete instances.

We can get away with this if the function doesn't need to access any object fields.
In this case there will be a look up table which takes the name of a month and
spits out a number eg 1 for January, 2 for February and so on. So Calendar isn't an
object but a class. You need to look up class methods in the documentation for
YCPL.

Where does Calendar come from? Do we have to write yet another class?
Hopefully YCPL will come with something similar already.
• You may have to tell YCPL you'll be using Calendar.
• A common class used without instances is Math (or similar) so you'll see

things like Math.pi and Math.logarithm().

• Now the answer to the previous question. Can we hi-jack some date validation?
How about something like:

ok = Calendar.IsValidDate(D,Mon,Y);
if(ok==true){
 ok = Calendar.IsValidTime(H,Min);
}

• What if there are no explicit date validation methods? We can still trap problems
as follows:

var dt : DateTime; // assumed existing built-in class
ok = true;
try
 dt = new DateTime(D,Mon,Y,H,Min);
except
 ok = false;

Here dt is always going to get thrown away, but we see if we can make it anyway.

• What do we do if the validation fails? We still have to construct a Day object even
if the data in it is unreliable.
• We could set the date to say 1/1/2000 and the time to 00:00. It is often a good

idea to force illegal data values to something 'safe' or 'obviously wrong' or
'obviously wrong and safe'. Whatever you do you MUST CLEARLY
DOCUMENT IT in places other people are likely to notice.

• We could add some text to the event such as "ERROR". This is a human
readable flag which doesn't destroy too much original data. Sometimes it isn't

Programming Version 0.4 Page 112 of 356

113 If you remember seeing this you're older than I thought! This used to be the classic
message given by BASIC programs when input couldn't be understood.

very helpful to say just Invalid input Redo from start.113 Instead
displaying the offending data (preferably with something more informative
than ERROR) allows the user to fathom out where they are going wrong. For
example this program is set up for d-m-y as in the British convention. An
American might first be baffled, then cross, that 3-16-2005 wasn't being
accepted, so a hint explaining the style of input required is probably in order.

• We could add an ok field to the object. This seems like a good idea because for
a very little overhead we can instantly tell if a certain Day is valid.

• We could raise an exception to be passed back up the calling chain until there
was a suitable place to handle it. At the moment what we might do where is a
bit hazy so we'll leave it.

• The exception handling in LoadFromFile() and SaveFromFile() appears to be
missing. Do we need it? Probably not. Suppose in SaveToFile() there was a run-
time error (eg disc full). This is what would happen:

Red Alert! Stop normal processing! Try to deal with exception... No method specified to handle this exception in
this method. Abort this method and report exception to caller. [DaysList object, SaveToFile method] Returned
from Day method with exception. Red Alert! Stop normal processing! Try to deal with exception... No method
specified to handle this exception in this method. Abort this method and report exception to caller. [Diary
object, SaveToFile method] Returned from DaysList method with exception. Red Alert! Stop normal processing!
Try to deal with exception... Aha! We are in a try-except block. Do the except bit: Print "Unable to write to file
foo".

The error is getting passed back up the calling chain and eventually handled. In
this case we can't do much better than that by trying to handle the problem inside
Day. For one thing we don't know the name of the file which is something that is
going to be handy to have in the error message.

• The formatting of the Display() is, to say the least, suspect. I can get away with this
as I'm coding in Fudge but you're using YCPL which will have stricter
requirements. See printf¤ in the glossary.

Review
Although we've taken a long time to get here as we've been looking at issues along the
way, our nest of objects didn't take much coding and is easy to understand at a first
glance.

Tricky things such as how exceptions propagate up the calling stack to the most
appropriate place to deal with them are provided almost for free.

Always the appropriate object is used to do the appropriate thing.

There's still work to do on the input and edit side of things but first wouldn't it be a good
idea if we could test what we've got?

One of the reasons programming is such a challenge is that there are so many ways
to write a program. You're going to need dozens of 'sit down and work this out slowly
and logically' exercises before everything slots into roughly the right place first time.
Putting in this time is probably the hardest aspect of becoming a really good
programmer - Stick with it because you'll end up being in the elite.

Programming Version 0.4 Page 113 of 356

114 This is only an introduction to testing. The development process will be dealt with in
more detail later.

Testing(1)114

There are four main things we want to test at this stage. Adding new dates, display,
loading and saving. Once we've got something that we know works (at least in a
fashion) we can refine it. The obvious test procedure is to create a blank Diary, add
some days, save, destroy the Diary object then create a new one from the file just saved
and display it.

Are these tests going to be one-off props used just during this phase or might we need
them at later stages? Let's keep them because having a test suite means we can thrash
our application at each stage to make sure nothing gets broken as we add more things.

The tests are probably best initiated by the main program, but we may need to add test
routines to the objects themselves. We'll see how we get on by adding a test function to
the main program.

function Test(){
 try
 d = new Diary(); //
 // d.AddDay(1,2,2003,4,5,"Five past four on 1st Feb '03"); // any?
 // d.AddDay(1,2,2003,4,5,"1 Feb 03 04:05 - Duplicate"); // dups OK?
 // d.AddDay(31,12,2005,23,59,"Last minute of 2005"); // stretch args
 // d.AddDay(1,"Jan",2006,0,0,"First minute of 2006"); // month name?
 // d.AddDay(32,1,2006,0,0,"Should fail - bad day");
 // d.AddDay(0,1,2006,0,0,"Should fail - bad day");
 // d.AddDay(1,13,2006,0,0,"Should fail - bad month");
 // d.AddDay(1,0,2006,0,0,"Should fail - bad month");
 // d.AddDay(1,"Wednesday",2006,0,0,"Should fail - bad month");
 // d.AddDay(1,1,2006,-1,0,"Should fail - bad hour");
 // d.AddDay(1,1,2006,24,0,"Should fail - bad hour");
 // d.AddDay(1,1,2006,0,-1,"Should fail - bad minute");
 // d.AddDay(1,1,2006,0,60,"Should fail - bad minute");
 s = "Very long string for testing purposes. ";
 vls = s + s + s + s + s + s + s + s + s + s;
 // d.AddDay(1,1,2006,0,0,vls); // what happens with 390 chars?
 // d.AddDay(1,1,2006,0,0,""); // what happens with empty event?
 except
 PrintLn("An exception occurred in Test()");

Woah! Let's stop there for a moment:
• Notice all the AddDays are commented-out. This is because if the reverse was true

and something unexpected happened we wouldn't know where. We can
uncomment these a few at a time once we've established that we can actually
create the Diary.

• And, ahem, we don't actually have an AddDay() method for Diary. The nearest
we've got is a constructor for a Day object. We will join this up in a moment after
tidying up the test routine.

• We're trying things we think should work and things we think should 'fail'. Recall
that we decided not to propagate an exception if the validation failed but just to set
an OK flag.

Programming Version 0.4 Page 114 of 356

• Would it be useful to have a method which tells us if there are any Days which are
not OK? Quite possibly. For our testing purposes we want to know exactly how
many, even if for everyday use all we want to know is if there are any at all. You
won't be surprised that in the OO style of programming we will knock out two
methods (DaysList seems the right place)

method AnyBadItems(){
 return (CountBadItems>0); // returns a boolean
}
method CountBadItems(){
 badCount = 0;
 for(i=0;i<this.itemCount;i++){
 d = (Day)GetItem(i);
 if(d.ok==false){badCount++;}
 }
 return badCount; // returns an integer
}

And now a method in Diary to access the one
in DaysList. (Notice the multiple dots.)

method CountBadItems(){
 return this.days.CountBadItems();
}

If we keep on going with our Test function what will it look like? A long list of method
calls. Now that isn't OOP style at all. Style isn't everything but in this case we do well
to stop and ask is this the way to do it? Shouldn't we split things up into segments
where there aren't lots of competing issues floating about? There might be all sorts of
strange things we haven't thought of coming out of the woodwork, so the simpler we
keep each segment of testing the easier it will be to investigate and isolate.

Lets have a bit of a rewrite:
method TestAdding(d : Diary){
 PrintLn("Testing adding");
 try
 d.AddDay(1,2,2003,4,5,"Five past four on 1st Feb '03"); // any?
 ...etc...
 except
 PrintLn("An exception occurred in TestAdding()");
 PrintLn(d.days.itemCount + " Total items"); // fudge
 PrintLn(d.CountBadItems() + " Bad items"); // fudge
}
• The fudge alerts in the results are because at the very least, even if YCPL allows

numbers and strings to be freely intermingled there may be a gotcha¤ if the + is
applied in the numerical-plus context not the string-concatenation context. See
printf¤ in the glossary.

• You should have lots of useful comments at the head of the code saying how to use
the method, when to use it, what results to expect, why some items are
commented out and only to be used for destructive testing.

Test() now looks like this:
method Test(){
 d = new Diary();
 TestAdding(d);
 TestSave(d);

This is quintessential OOP style.
Lots of compact methods, each
with it's purpose, with lots of
interactions and lots of flexibility.

Programming Version 0.4 Page 115 of 356

115 See page @@@ for discussion.

(to be continued)
• Do we really need a separate TestSave() method? It's hardly worth the bother of a

separate method just for the line d.SaveToFile("DiaryTest.dat"); is it? Come
on, you know the answer to this one by now...
...Yes we do because
(a) Compartmentalising things is the safest and simplest way
(b) To test saving we will need to fiddle with more than one file name. We need to

test for broken filenames and URLs and gotchas¤. We need to do these so that
we can validate our exception handling routines.

(Test() method continued)
 d2 = TestLoad(); // should return new Diary
 if(d==d2){
 PrintLn("PASS:Save-Load works");
 }else{
 PrintLn("FAIL:Loaded version differs from saved version");
 }
 TestDisplay(d2);
}

• TestLoad() must return a new Diary. (I wonder what happens if it doesn't - You can
experiment using YCPL and see.)

• d==d2 needs to be approached carefully.115 d and d2 are not the same object but
should have exactly the same data in them. That's what we're trying to test for to
see if anything was lost by saving and loading.

• Notice that the test always shows something. Also the messages are clearly
flagged with a pass/fail flag.

Review
If you are getting fed up with this long drawn-out process I can understand your
feelings. The good news is:
• We are going to stop here for the time being.
• You are learning a huge amount very quickly. This would takes months on a

computer science course.
• You are learning far more than the science of programming

• The art of computing
• The mental processes of dividing tasks into easy to grasp units
• The slog of making a bullet-proof application

Almost anyone can cobble together code but few can be trusted to deliver anything
more than a lash-up.

By the way, as promised, the AddDay() method for Diary.
method AddDay(D:int,Mon:int,Y:int,H:int,Min:int,Event:string){
 this.days.AddItem(new Day(D,Mon,Y,H,Min,Event));
}
method AddDay(D:int,Mon:string,Y:int,H:int,Min:int,Event:string){
 this.days.AddItem(new Day(D,Mon,Y,H,Min,Event));
}

• AddItem() is an assumed method inherited from SortedList.
• We could have created a method for DaysList called AddDay(), in fact that would

Programming Version 0.4 Page 116 of 356

be the safest thing to do. The inherited AddItem() method lets us and anything we
like which is a potential source of errors - late at night you'll be surprised at the sort
of daft mistakes like this you can make.

Finish_the_diary_for_now
0. With your diary program
1. Finish coding in YCPL from the complete fudge listing in appendix @@@
2. Test to get working
- Disable tests by commenting them out
3. Test failure modes
4. Write a 'read-me' to go in your development directory
4.1 Overview of the project
4.1.1 Description of how the project came about
4.1.2 Status (Ready for use?)
4.1.3 Ownership
4.1.4 Where the design documents are or a top-down description
4.2 How to compile and run
4.3 Limitations and To-dos
4.4 Any other notes you might find useful if you returned to this in a few

months time.
- See 6.
5. Backup the project
6. If possible give the backup to somebody else who knows about YCPL and see

if they can get it to run on their system.
- This is a practical test of backup/restore *and*
- may illustrate some difficulties associated with transferring
- a code base between so-called 'identical' systems.

Programming Version 0.4 Page 117 of 356

116 Pronounced Es-Que-El. Anyone who says different is a whelk-brained droid. (The
significance of this remark will become apparent if you encounter it.)

10. Databases
Programmers need to know about databases. Even if a lot of the time you find it
convenient to store objects as ordinary files, and even if you work with esoteric data
structures you still need to know when jumping on the database bus is the best answer.

In this chapter we'll do a lot of looking at how databases are constructed then right at
the end in no time flat we'll do some real SQL practical.

Database are used to store data. No really?
• Any data.
• Lots of it.
• Shared between users, applications and systems.
• Optimised for speed of update and retrieval
• Designed for robustness
• Supported by many programming language interfaces
• Used by millions (Safety in numbers.)
• Incorporating sophisticated features
• Providing various security features

Basically databases are easy to use, efficient tools for practically any data storage task
which requires lots of the same sort of record being managed in a central repository. (If
your data structure is more naturally a tree then you may be better off using an
alternative to off-the-shelf relational databases.)

There is a nice 'standard' programming language called SQL116 and many tools to help
you design, build and maintain them. We will be looking at SQL, how databases work,
how you link your programs to them, how to design a structure for an application and
briefly sketch the administrative aspects that you may want to think about.
(@@@Check last sentence)

A short history of databases
In Ye Olden Days if you had large quantities of data it was on magnetic tapes. There
were two drawbacks:
• You might have had 100 tapes but only 3 tape drives
• You would have to 'slowly' wind through a tape to get to a particular point.
Nowadays data is held on always-ready discs which can fetch any particular bit in a
few thousandths of a second.

Suppose a firm was receiving payments for goods dispatched. The book work might go
something like this:
1 Create a list of payments received. This list would have the invoice number on it

Programming Version 0.4 Page 118 of 356

117 Which might mean (a) Marking it as to be deleted then (b) Some time later copying the
tape this time leaving out the to be deleted ones.

118 Resources were pitifully small, very expensive, slow and often required 'engineering'
down-time to achieve decent reliability. The PC on your desk is probably theoretically
capable of doing all the work done by all the mainframes in London in 1970.

which might have to have been looked up by hand.
2 Sort this list of payments into invoice number order
3 Run through the outstanding invoices tape looking for ones to pay. (Remember you

can't keep jumping backwards and forwards through a tape it would take ages to
wind between invoices at random.) If a good match then remove from the
outstanding invoices tape117 and add to the end of the paid invoices tape (which
will get sorted - no mean feat - later) and add the customer number to the payment
record. (If a bad match then create a reject log.)

4 Now sort the list of payments by customer number
5 Now run through the customer tape updating the account balances from the

payments list.
6 Now sort the list of payments by account code
7 Now run the accounts tape updating by the amounts paid by the customers.

Nowadays we simply locate the invoice record, customer and account records at the
same time. Mark the invoice paid, credit the customer and debit the account and
update as a single transaction. We can do one single transaction when we feel like it
without having to plan a complicated schedule of which tapes are on which drive. In
the old days the payments might be done in a batch nightly or even twice a week, so
allowing the data to get out of step with reality. Also what happens if say a tape drive
crashes half way through step 5? Some transactions are 2/3rds complete and some
1/3rd complete - An utter nightmare. Nowadays if one part of the transaction fails it
can be 'rolled-back' to the state before the problem automatically. Brilliant! And
problems are reported straight away which makes them easier to deal with. And you
can check the real credit remaining of a customer not a record which hasn't been
updated with the goods that went out of the door this morning.

There was a lot of ingenuity used to optimise the processing of data like this. In fact
"Data Processing" became a recognised, actually the mainstream, flavour of computing.
("Information Technology" hadn't been invented then.) Jobs were carefully batched and
scheduled to make the maximum use of resources in primitive circumstances.118 The
art of Systems Analysis evolved with two aims : To apply the new technology in useful
ways to business and to optimise use of computer time - with a join somewhere in the
middle. With three tape drives and perhaps 96K memory words (that's for a mainframe)
you weren't going to be doing much in the way of collating business information.
Manager's and clerks would have shelves full of large listings which in the scheme of
things it was easier to wade through than have a program written specially to extract
certain items or calculate specific ratios.

Along came the magnetic disc which could be used for the storage of live business
data. This data was way down the priorities for what should go on discs, but eventually
it was discovered that a random access file opened up so many possibilities for

Programming Version 0.4 Page 119 of 356

investigation and quickly cross referencing records that even though in 1980 disc
storage cost more than $50 per megabyte it was worthwhile. One of the reasons the DP
people used to sell the idea to management was that in future they would be able to
access their data and extract summary information within hours of having a need.
Tools called report writers evolved to make it easy to specify the records to be extracted
from the random access files, sums to be done, sorting and presentation.

It was soon realised that the back-end, the collection of random access files needed to
be well defined and structured with indexes. The definition of files and record layouts
(and later how to cross-reference them) is called a database schema.

In the early 1970s the relational database was created and made to work. This
combined the back-end of fast, safe access to records with an easy to use front-end of
commands for specifying the schema and working with data all based on a simple
model of 'tables' of identically formatted records with links between them which could
then be combined into a more useful compound 'record'. For example each record of the
invoice table would contain a reference to the appropriate record in a customer table
allowing all invoices for a customer to be extracted, or to display the customer's details
when looking at an invoice on the screen. One of the key ideas is that information is
not duplicated. In this example the invoice doesn't contain any customer details just
the link that relates to them. This means that if for example a customer changes their
name then there is no need to change anything with invoices, delivery notes, late
payment demands, sales force records and so on.(@@@ Diagram?)

There are more possibilities for database building than SQL and you may have to work
with legacy code¤ so we will start with random access files with fixed length records,
work our way to SQL and get really stuck into all aspects of relational databases using
it, then finally look at some alternatives.(@@@Check last clause)

Random access files
A plain file stream is really handy for piling all sorts of different things in so long as you
don't need to get to a particular item without reading all the preceding ones. There are
two methods we could use to get round this:
1 Index the start of items by how far into the file they are
2 Make all items the same size and calculate the offset into the file to find the nth

item by multiplying n by the size of each item.

Method 1 is complicated and full of snags. For example if you delete something you
now have so many free bytes of space - What's the chance of the next thing you want to
write being able to use up this space exactly? Ordinary file systems work like this by
allocating and freeing space on disc in variable quantities and keeping a list of
filenames with where they are physically located on the disc.

Method 2 is simple enough for everyday use. Providing you've decided how many bytes
you're going to need in the worst case - the record length - you can work out where the
record starts, fiddle with it, write a new one or mark it free to be recycled. It's about as
easy as working with array elements, but significantly slower. The notable
characteristic of such random access files is that all records are fixed length. This
means that the bits of data that are combined to make up a record are fixed length. If

Programming Version 0.4 Page 120 of 356

119 Integers(specified precision), reals(specified precision), booleans and fixed length strings.
Actually you can normally nest records for added convenience.

120 Boolean markers are often called 'flags' but a 'flag' doesn't necessarily have to have just
two states although that is usually the case.

you recall ne of the tests we did in the diary program was to see what happens when
there was a very long string. This would have failed if we'd had to decide that, say, an
event could only be a maximum of 30 characters. The alternative would have been to
have allocated a huge (how huge?) space for the remote possibility of 300+ characters
being in an event description.

The easy way to read a fixed length record is to define a type (sometimes called a
record, sometimes a structure, possibly an object) with fixed-length primitive types119

without any fields that repeat a variable number of times. The hard way is to work out
the number of bytes into the record something will be and add that to the start of the
record so you can read just that item. (It appears you're reading fewer bytes from the
file this way but in practice disc reads are cached so asking a random access file to
read say the integer at the very start will possibly result in the operating system
physically reading dozens of records on the assumption that you are likely to want some
more from the vicinity shortly.)

Record layouts, that is the order and type of the component the fields, need to be clearly
documented. As they tend to be external to the program, possibly being shared by
complementary programs it makes sense to have the documentation separate from the
program code. (Hint: You need to be clear where this documentation lives in your filing
system.)

When you're contemplating creating a record layout from scratch you often have to ask
yourself about how information is to be represented. Suppose for sake of argument your
application needed to know if a user's email address was valid. The obvious way is to
have a boolean120 flag using YCPLs boolean type.
• Are you sure you know how this will be physically written to the file? (See Gotchas

below.)
• Might a single Y / N character be clearer and easier for other applications to

interface with?
But who says there are only two possibilities? What about "Not yet known" and
"Suspect" and "due for revalidation"? Even if you haven't planned on using this detail at
the moment it looks like quite a good idea to allow yourself room for manoeuver later.

But why does it matter to get the record format right first time? Surely you can change
the record layout as required? Only with difficulty - sometimes great difficulty. Even if
this file format is used only by you for a single program you'll find yourself having to
write a program that reads in the old format and copies in the new format to translate
your data. Believe me it is a pain. Not only does everybody have to stop work, but then
you have to do the translation and replace every program and test - complete with roll-
back plan. (Not to mention making
sure that you never ever use any old
versions of the programs that might be Creating a record format is like cutting a

bit of wire. Always allow a bit of slack.

Programming Version 0.4 Page 121 of 356

121 Old versions are practically impossible to eliminate.

122 Obviously a single boolean can't practically take less than one, but a bunch might be
packed into just one byte.

123 That's assuming one character equals one byte. Unicode isn't!

124 As Sherlock Holmes could tell you.

lurking around the place - Can you be sure you've upgraded every copy of every
program.)121 Then some of your customers don't upgrade and you're stuck with
supporting two incompatible systems until they do.

Record gotchas
• Not all languages or operating systems store values using the same pattern of bits

and bytes. We discussed this on page @@@. If other applications or operating
systems are likely to use your random access files you need to be clear on a byte-
for-byte basis how data is stored. Strings need special care in this respect.

• When counting up the length of all the fields take care to 'read the rules'. It is quite
possible for a boolean to take two bytes!122 A fixed length string may require an
additional byte or two to store the length as well as the characters themselves.123

• Due to a quirk of how processors operate there are advantages of 'aligning' fields
within a record in multiples of two bytes. Most numeric fields are 2 or 4 bytes
anyway but characters and booleans aren't. The effect of this can be for the
internal representation of the record to be adjusted by padding odd length items if
required with a blank byte. Suppose you've got a single character and boolean
defined as fields in your record then if you used a hex editor¤ to look at a file
written using this record specification you'd probably see each record taking four
bytes.

char data | blank | bool data | blank
or it might be laid out

blank | char data | blank | bool data
or

blank | char data | 16-bit boolean
When what you (quite reasonably) expected to see was

char data | bool data

You can hit this problem when writing or reading somebody else's files.

The answer is to use packed records. Look up "word-aligned" in your
documentation.

Indexing
How many people do you know called "768"? In practice even house numbers are not
numeric.124 But in our random access file system we always need to get the nth record.

Programming Version 0.4 Page 122 of 356

125 Don't go writing your own sort routines!

The answer is usually an index (but could be a hash - see chapter @@@) For those
that are interested we will deal a bit more with the inner workings of indexes in a later
chapter.(@@@ Will we?) There is one fundamental concept, which you know already,
and from which everything else flows: An index is two parts : The key and the (pointer
to) the data. The structure and subtleties of the key are crucial to the usefulness of the
index. Do you ever see a phone book where Ann Smith comes before Bertie Brown? To
be useful we need the index sorted by something accessible and reliable.125 There are
all sorts of wrinkles with ordinary 'phone book' names.
• Variations: Mac -v- Mc
• Aliases: William -v- Bill
• Odd characters: D'eath, Dombey & Son Ltd.
• Changes : Miss Jones becomes Mrs Brown
• Titles
• Variable, sometimes excessive, length
• Unknown spelling: On the phone is it "Davis" or "Davies"

If similar sounding names might give you grief, look up 'Soundex' which is a method for
hashing. (Remember hashing from chapter @@@? In this case similar sounding
words hash to the same thing.)

Another issue with names is case sensitivity. If you are not careful little a will come
after big Z. This is a gotcha. Suppose your part numbers are normally all upper case
and somehow f123 gets into the list instead of F123. When people phone up and ask
for part number "Ef-one-two-three" it doesn't appear on the screen because although it
is in the index, it is right at the end, and computers work like humans do when
searching indexes so to the computer f123 doesn't appear in the F section and therefore
'doesn't exist'. Stop and think what the consequences of this might be. Now think of all
the situations where indexes are used (ie everywhere - in airports, hospitals, banks - the
list goes on.) Don't ever let this happen: Always use case insensitive indexing.

Review
I bet none of the documentation on how to write YCPL warns you about this gotcha.
That means there are all those people out there writing programs who don't know
they're a menace. Scary!

If nothing else, at least you will be competent. As I hinted at the start of the
chapter,(@@@ did I) Data Processing, though vital and all around us, it is much less
challenging than other aspects of computing. This may suit your temperament - or not.
Worth remembering if you have career choices to make.

My approach to people's names is ask them both what they want to be known as
and also be certain what their surname and first name is. It's not unusual to get
"Gill Smith" and "Dr S G Jones" as the same person.

Programming Version 0.4 Page 123 of 356

126 Although in which case you don't really need an index at all.

127 You'd be surprised how often existing unique identifiers aren't. But you only find this out a
year or so afterwards. Ouch! Unfair! Swindle!

If you found the previous chapter a bit of an interesting eye-opener and whetted your
appetite for things to come then Data Processing as a career will be a bit tame. On the
other hand if it was 'hurting your head' don't worry those few pages took me years to
learn. - Just step back a bit.

Indexing in practice
Unique keys
If you've ever had the same name as somebody in the same environment you won't
need telling how confusing it can be if keys aren't unique. Quite simply, at some level
of detail, record A has to be distinguishable from record B. In the file itself you could
have 100 records all identical down to the last bit, but in the index you need to identify
them distinctly.126

As we'll see soon a unique key is a prerequisite for items in a database.

So how do you ensure, without any doubt whatsoever, ever, that you will have a unique
key for every item? For people we might consider
- surname+initials. Hmmm A clash looks pretty inevitable over time.
- What about surname+other names? Less likelihood of a clash but still a real

possibility.
- What about surname+initials+date of birth. This is a common key used where

date of birth is available but there is no guarantee of uniqueness.
- Wouldn't it be logical to hash all the data in the record to get a magic number and

use that? Not very good because the data will be changing and so will the hash.
- What about picking a number at random (making sure we haven't used the number

already) and sticking with it? This fulfills the guaranteed to be unique criterion but
we'll never find the person again unless they can tell us their random number.

- What about using some existing unique identifier? How about national insurance
number? This might just work for employees but what happens if we are taking on
a temporary worker from another country where paperwork might take ages? (In
Sweden every person is given a unique number at birth. Isn't that handy ... Unless
you are a foreign tourist needing hospital treatment and the hospital needs your
birth number.)127 And you still need to know the number.

Umm...

The answer is to have multiple indexes. One which will always be unique is typically
just an incrementing number which then sticks forever to that data record. This means
that if you know the record ID number you can guarantee finding it. (And, very
importantly - if you can't find it you know for certain it doesn't exist.) Then you have
more general purpose secondary indexes based on how you want to get at the data in
everyday situations. With people you'd probably use surname.

Programming Version 0.4 Page 124 of 356

128 Terminology: I prefer to use 'indices' for pointers to array elements and 'indexes' for more
than one index.

129 "Rare" is synonymous with "inevitable in the long run". (This concept is practically the
essence of serious, professional programming. If by this stage of the book you're not
happy with this then please chose something else.)

130 As a programmer you won't be worried about nested brackets. This is not a traditional
use of brackets in English, but the logic is straightforward and sensible. Programmers are
not fazed by this, in fact they appreciate it. However repeated nesting is probably a sign
that you should be thinking of adjusting the structure of your document and perhaps re-
ordering your thoughts. (By the way - Footnotes are a sort of block.)

Having multiple indexes allows us to efficiently scan and process our data in different
orders. A school might have a pupil index based alphabetically on surname and
another on class+surname. The latter would make it easy for us to look at all the pupils
in a particular class as a bunch - How useful would that be!

Indexes for speed
Specialised indexes128 can be handy for quick access in particular ways. For example I
wrote a database containing stocks and shares for a financial services firm. Each
company might have a number of share types. We found that most of the time we could
index using the first two characters of the company name and the first two of the share
type combined into a short-cut code. At least we'd get only small handful to select
from. This meant that four quick keystrokes took us 95% of the way. We needed the
index to speed up access to the data to keep up with the keystrokes. Suppose we'd had
to search all the records in the database from top to bottom - perhaps that would take
ten seconds - what an age! But with an index we can get to the right place straight
away in fractions of a second.

Indexing odds and ends
The important thing about an index is of course that it is an ordered list. We can
process it from beginning to end and we can find an item (or be confident that it isn't in
the list) quickly and with confidence. Does magic ability to jump to the record we want
come for free?
Yes: In a way, all you have to do is command a database program to index for you and

Hey-Presto it's done and you are unlikely to notice any overhead.
No: Every index needs to be maintained. Each time say a record is deleted the

index needs to be adjusted - which if you think about it can never be done at
exactly the same instant as the alteration to the data. Complicated juggling
goes on inside indexes (we'll see this in a later chapter@@@???) which all
requires time, memory and disc space. All of which means more things to go
wrong. (One rare129 problem is when an index becomes, for unknown reasons,
(but the cause doesn't matter)130 out of step with the data file.)

Sometimes you need an index to be accurate and ready for use all the time, but on
others you are only requiring a particular order to be used once in a while. In the latter
case it may be better not to have a live index and only create one from scratch for the
times you need it. For example once a year you have a stock-check when a list of all
the items in the stores printed out in the bin-shelf-aisle number is required. If you didn't

Programming Version 0.4 Page 125 of 356

131 Or more sophisticated possibilities such as characteristics of images.

132 At this stage row/record and column/field are to all intents and purposes interchangeable.

need this order for anything else then the complication of a live index for the other 364
days of the year is not justified.

Hey, but I want to index my blog. How can I retrieve all the fault reports containing the
word "smoke"? So? What's your problem? That's not a rhetorical question. Have a think
what the issues are.

The indexes we've dealt with until now have been based on alpha-numeric sorting of
key fields. Also there is exactly one index entry (per index) for each data record. There
is no reason why we need to stick to this scheme. If we have a process that can look at
text131 to pick out words and collect those then we can make an index. Sometimes this
is called a concordance. This is basically a list of keys with pointers to all the records
that contain the word. This can get quite sophisticated, for example some full-text
indexes can tell that "country" and "countries" are 'the same'.

Review
We are about to hit databases proper. Behind the scenes relational databases are
random access files with indexes, so all of the above applies.

Whatever you do, do not try to write your own indexing routines - thousands of people
have worked at doing the job well and dealt with the wrinkles, so don't try to re-invent
the wheel.

We will now look at real databases in two stages. Firstly 'wrappers' for random access
files that do the hard work and housekeeping for you. Then secondly the development
of that to the fully fledged relational database model.

Tabular data files
In between the do it yourself random access file and the fully relational database are
wrappers, which often hit the 'usefulness' spot, for random access files, allowing fields
to be accessed by name, indexes to be maintained automatically, lots of interesting
data types, cross references to be established (matching fields from different files),
transactions (all files are updated or none), simple interfaces and integration with rapid
development systems.

Terminology: You know what a random access file is :- A file with umpteen records of a
fixed length. A table is a concept which is implemented using a random access file and
index files controlled by a table definition. What in a random access file would be
called fields are called columns and what in a random access file would be called a
record is called a row. So for example employee's length of service is a field or column,
and each employee is represented by one record or row.132

The long and short of it is that you are using a suite of functions rather than having to
cobble together your own. These functions are more likely to be reliable, efficient,
comprehensive and take into account all manner of wrinkles that you never thought of.

Programming Version 0.4 Page 126 of 356

133 Record locking will be dealt with very shortly.

134 I wrote a mapping program that was 400Kb itself plus 4Mb of database program. In the
days of slow Internet connections this was a pain. WCPGW? My software 'upgrades' the
users already installed database - See upgrade in glossary.

Typically you define fields in some table definition utility, define one or more indexes
similarly then you can use these inside your program. You might say

use the customer-by-sales-area index...
 go to first record
 while not 'end of customers file'{
 read current record into variable(s)
 process customer record
 fetch next record
 }

So much work, including record locking133, goes on behind the scenes, making the
useful bit of programming so much more productive, that tabular databases soon took
over from raw random access files - where languages and operating systems could be
made to work with them. The step-change is that the database program now owns the
files, and you have to go via the database functions to get to your data. This is great in
one respect because we can leave the chores to the database and take advantage of the
work of specialist database programmers for speed, reliability and function. On the
other hand we can't get at the data without using the program. This means that if I
write a program using such a library of database functions, you are going to have to
install it on your system. At the very least this might be a bind, but quite likely or
expensive or impossible.134 So tabular database files are not generally used for
exchanging information, and there is the temptation to use light-weight alternatives for
stand-alone applications.

Tabular database programs generally
have ways to let you search for items by
matching key and partial match.
Partial match is especially useful for
applications where a clerk needs to
retrieve something by name - making them type the whole thing is a bit tedious and
prone to spelling mistakes and the Davis/Davies trap. Also you're likely to be able,
either directly or with a simple find-first/until-not-found/find-next procedure, to list all
those matching a partial key. Typically you will be limited to the order of the results by
the indexes you've defined. That is if you decided on a whim to sort on some aspect or
aspects of your data which wasn't indexed you'd need to do the sort yourself.

A handy function used when creating a new record is to automatically provide a
unique, integer field value. This is done by adding one each time a record is added.
You can then use this as your unique record ID. The code goes something like:

AddNewRecord(tableFoo,arrayOfData);
id = LastAutoIncrement(tableFoo);

A typical scenario where you might use this is
if 'Create new record' button clicked
 create blank record with default values
 write blank record to table
 get record ID

The basic functions create, retrieve,
update and delete are sometimes known
collectively as 'crud'.

Programming Version 0.4 Page 127 of 356

135 User doesn't need to a be a person - it could be the monthly accounting program - any
program.

136 We haven't dealt with file locking. The operating system books-out each file to the
programs requesting access. An application asks for permissions such as reading only or
reading and writing. A typical rule is only one writer at a time.

 do EditRecord(ID) procedure
where you re-use the editing screen rather than write a brand new one.

Managing simultaneous access.
Think for a moment what would be the consequences of two people modifying the
same record at the same time. Only the last one to write the record will get saved as it
will overwrite any changes just made. User A reads record containing 10 items in stock. User B reads the
same record and finds 10 items in stock. User A removes an item from stock and writes 9 back to the file. User B adds an

item to stock and writes 11 back to the file. Result: Computer is out of synch with reality.

OK so we make a rule: "Only one user135 can work on the stock file at any time". The file
will be locked while somebody is working on it. This will certainly fix the issue just
raised... but the storeman in stores won't be best pleased if he can only use the system
on Mondays, Wednesdays and Fridays; the office clerks won't be happy if they can only
do their work on Tuesdays and Thursdays; and everybody else with a need to work with
the stores inventory won't need to bother coming in to work! So you think that's
extreme - your alternative is ...?

The magic is record locking instead of file locking136. This is managed by the database
program and is vital for all multi-user applications. There are various ways of dealing
with multiple updates. The common one is to allow any number of readers but only one
to edit. Since there tend to be a lot more reads than edits this works well in practice.
Another scheme checks when writing back a record that no other data has changed
since it was read. Transaction integrity gets more complicated when relevant data is
held on a number of files which need to be kept synchronised.

What can you do in your program if when it requests a record for editing it has already
been locked for editing by another user? That depends on the nature of the
applications. Perhaps you try again after a short delay, perhaps you report an error and
carry on, perhaps you report an error to a screen "another user has this item - please try
later" or something similar. The important thing about record locking is to avoid using
it 'just in case'. Try to keep the time from getting the lock to writing the update and
freeing the lock as short as possible. NB. Make sure you free all locks if you encounter
exceptions otherwise you can end up with a ghost lock. Most of the time locking is done
behind the scenes in what may be a non-obvious way. Mostly you can use record
locking without much worry but you will need to look at the documentation of your
database to find out the details.

Combining tables
There are very few database applications that only have one table. An address book,
possibly a diary, membership list and that's about it. A list of employees will be tied to
a list of departments, a list of CDs will be tied to a list of artists, a list of parts will be

Programming Version 0.4 Page 128 of 356

137 Actually I don't care whether you're impressed or not. It is one of the technological
breakthroughs of the 20th century.

tied to a list of suppliers, a list of invoices will be tied to a list of customers and a list of
orders.

What do I mean by "tied"? It depends, but the basic issue is: "How can I combine the
data I have about my CDs (date, title, genre etc) with the artists (Name, description,
date of birth etc.) to give me useful information like: All CDs by a given artist and The
artist's details for a given CD?

The brute force approach is to put the artist's name and details into all the CD records.
You don't need me to point out that if the artist's details change we'd have to find all the
CD records and change them too. Worse, what happens if the artist name changes,
even by a fraction - Now all my CDs by Ellington D. are no relation to the artist Duke
Ellington. The whole point of multiple tables is to avoid these issues. We try to avoid
duplicating any data so that if it changes, we only have to change it once in one place,
and then, however we reference it, we'll get the new version. This is done by cross-
indexing records and the result is called a relational database.

Let's look at the two example record definitions for CD and Artist.
CD ARTIST
 ID - Integer ID - Integer
 Title - String Name - String
 Artist - Integer Description - String

The relation (as in relational database) is between CD.Artist and ARTIST.ID. (Dots used
like this are a common convention to indicate table.field.) Let's see how the
computer can achieve two sample tasks:

All CDs by a given artist
Get ID of selected ARTIST record. Look in CD table (preferably using an index if there is one) for all CD records
with that ID in the ARTIST field.

Artist's details for a given CD
Get the Artist field from the CD record. Look this up in the guaranteed-to-be-unique primary index of the ARTIST
table. Return the Description field.

Not impressed?137 How about all artists for a given genre? We'll add in genre to the
database as a table and as a field of CD.

GENRE CD
 Genre - string ID - Integer

 Title - String
 Artist - Integer // matches ARTIST.ID
 Genre - String // matches GENRE.Genre

GENRE.Genre will be a unique list. (Remember primary keys?) but many CDs will have
duplicate CD.Genre fields. Is that good? Obviously CD.Genre can't be unique, but
doesn't that ring a warning bell? What happens if we were to change R&B to Rhythm
and Blues? Whoops!

GENRE CD
 ID - Integer ID - Integer
 Genre - string Title - String

 Artist - Integer // matches ARTIST.ID
 Genre - Integer // matches GENRE.ID

Now we can fiddle with GENRE.Genre as much as we like without affection the data
relationship.

Programming Version 0.4 Page 129 of 356

Now do something useful
Display CD information

Fetch the bits of the CD record. Fetch the ARTIST record as indexed by CD.Artist. Fetch the GENRE record as
indexed by CD.Genre. Display the data from these three records.

List artists for a selected genre
Get GENRE.ID. Now find all the CD records with matching CD.Genre and put them into a working list. Sort
these CD records by CD.Artist. (This won't be alphabetical!) Remove records with duplicate CD.Artist. Create a
new working list by looking up each CD.Artist once to fetch ARTIST records. Sort the working list of ARTIST
recods by name. (This will be alphabetical.)

I don't know about you, but rather than program all that lot I prefer to write "select
Name from ARTIST where ARTIST.ID = @@@" and have the results delivered reliably
and efficiently on a plate. That's what SQL will do for us in a moment.

Referential integrity
It is worth noting that when we were looking up CD.Genre we knew that all the
CD.Genre data values would be one of the GENRE.ID values. But suppose we've got
fed up with a genre and decide to delete it from the GENRE table. Oh dear! This
condition is no longer valid because we could now have some orphan CD.Genre values
which never appear in the GENRE table itself. Spotting these loose ends is one thing,
doing something about them is another. Typically you write-in protections in your code
to do things like insist on all CDs having their genre changed before allowing the
GENRE record to be deleted. However you may also command your database to
enforce referential integrity, or occasionally you'd run an exception report to discover
'can never happen'¤ cases.

4GL and all that
Fourth generation language. I expect there are computer science courses where this is
defined and where students write essays on the subject. In the 1980s the term was
bandied around by every database salesman as a mantra for the must-have in the
march of progress.

Actually the hype and pseudo-
definitions were wrapping an
extremely useful step forward in
technology. The three related
advances were:
• Integrating databases with front-

end application builders.
• Making databases easier to

design and use
• Putting 'works out of the box',

'build-your-own', 'do something
useful' databases on PCs.

Suddenly a new kid on the block could
put together a working system in
hours and days rather than months
and years that would be required if a
department had to join the queue for a

Looking back, the mid-80s was a time
when the technology was becoming widely
available to small businesses and
departments of large firms who suddenly
found there was a lot that was feasible
even without networking. It opened up the
possibilities to many more people who
thought they'd have a go at either
programming themselves or getting
somebody to knock up an application for
them. This resulted in the 'IT revolution' of
the time which was more a feeling that one
day soon we'd all have a screen on our
desks at work so we'd better train all school
children as computer scientists.

Programming Version 0.4 Page 130 of 356

138 Often by devious subterfuge to foil the DP department's monopolistic veto.

mainframe application. So PCs were purchased138, the newly arrived LAN technology
was tried out and bespoke systems proliferated. The 4GLs marked the change from
that strange thing that happened in special centres 'data processing' to desk-top
applications - 'here and now doing the things we want in our way'.

Application building
A list of records on the database displayed in a scrollable, searchable table on the
screen is an obvious access tool. Everyone wants to lay out fields on a screen for editing
and 'connect' them to tables. Tabular printouts and mail merge join the list of standard
functions. Since CRUD is so universal it made sense to provide CRUDness with varying
degrees of prettyfication customisation on the screen and flexibility behind the scenes.

There are many different approaches to marrying the front-end bodywork on the
database chassis. Very roughly, the two ends of the spectrum are
• programming environment with screen and report building tools
• basic database layout plus 'easy-to-use' graphical design

Professional programmers prefer to get stuck in with the details of the data and so
naturally prefer the first approach. The speed of building screens and reports is of
course very welcome, but screens
remain just one part of the application.
The second approach is preferred by
people who find themselves having to
'do something' and find they can get
started painlessly by painting screens.
Professional programmers wince at the
resulting systems for reasons we'll
shortly see. They prefer to put the
wallpaper on after building the walls
and building the walls after looking at
the plans and drawing the plans after
understanding what the building is for.

Review
The relational database is an incredibly useful model and modern technology makes it
very straightforward to use. There are some important design skills to come shortly
which relate to the way data is split across a number of tables.

If you were all fired-up on objects from the previous chapter you may be feeling a bit
queasy about dispersing data which 'lives together' (such as all the information about a
CD) across multiple tables. You have every right to be. The oil of objects and the water
of relational databases don't seem to mix very well. Both are proven in practice and
you'll probably be working with both a lot in the same line of code. It's not something to
worry about now.

We've whisked through a very important revolution. Databases became something that
everyone used. The pressure for 'results today' gave us application building tools of

Do not underestimate the importance of
'anybody can write an application'. Why
should somebody pay you a lot of money
to ask irrelevant questions, cast doubt on
the way work is done at the moment -
after all they should know (Err.. No but you
can't tell them that directly) and take
weeks to deliver a first draft when they
could make it themselves in an evening at
home on the PC. Discuss.

Programming Version 0.4 Page 131 of 356

139 I designed and built the CD collection database used in this chapter... ...The first CD I
picked up to enter into it as test data turned out to be a double CD. Oops - Never thought
of that. Actually it breaks the design because I can't develop the database further by
adding a track table and relating it to a 'box' as tracks 'belong' to 'discs'. Sigh - If only I'd

varying sorts which opened the doors to a new generation of application developers.
Suddenly it was possible to knock up a demonstration system in a couple of days and
finish it in a couple of weeks something unheard of in the mainframe world. Databases
fuelled the need for LANs and computerised smaller businesses and departments.

We will return to rapid application building in a later chapter. For the time being we
must stick to the skeleton before we can add the flesh. The next two sections discuss
how to design a database schema from scratch and then look at the power of SQL.

Database design
The things that will set you apart from the rest of the world that thinks it can program
are:
• Your ability to understand what needs to be done
• Your skill in being able to choose the right components and decide how they

should be assembled.
We did some of this in the previous chapter where the components were objects and
methods. Now we do the same thing with tables and relations.

The CD collection
Let's refresh our view of the CD database again.

Purpose:
To list, add, sort, select, edit CD catalogue information

Notice that everything here is doing-something-with-data not data per se. As an
overview it is fine but as an application specification it leaves something to be desired
in detail. How can we find this detail?
• Method 1 (Obvious and useless)

Get the user to write down what they want and sign it.
WCPGW?
• The user doesn't have the language to describe what they want in technical

terms and they might use jargon related to their own trade which you don't
properly understand.

• The user takes lots of things for granted, perhaps assuming data is always
complete, perhaps not realising the big difference between date in the style of
1999 and 12th Jan 1999.

• The user looks at a few CDs and finds the longest reference is 8 characters and
gives this to you as a 'fact' when of course it is just the results of a survey.

• The user wants to do things without collecting the necessary data. This isn't
quite as daft as "I want a report of the items not in the database" but only just.
Generating statistics is a minefield with unreliable and missing data making a
mockery of any reliable results.

• The user 'knows' about databases and designs it for you. This is a real swine
because when they've made their minds up on the back of an envelope the
scene is set for literally hours of 'my way's best'.139

Programming Version 0.4 Page 132 of 356

done the systems analysis properly.

140 I arranged for monitoring of the quality of form filling in a clinical environment where
practitioners were supposed to personally check four items on a form and sign it. They
had a very clear formal clinical and clerical protocol to follow. How simple is that? Too
complex for 60%! We got the error rate down in the end by insisting the forms were
resubmitted until clerically correct. (We had no way of checking the clinical error rate. It
could be done for a fraction of the cost of the mistakes that must be happening but that
requires leadership - Sadly not available in the NHS.)

141 Particularly if you're used to following procedures and only getting things right first time a
glass of beer or two can be a great liberator of the what-ifs, let's follow that thread a bit
and sketching alternatives that are the ingredients of a thoroughly sound design.

142 Get the important person on board before ever letting your ideas go before a committee.
Let 'important person' do the selling to their colleagues.

And most importantly
• The user is looking at what they do now and try to replicate that with a

computer system. No. No. No! That's like saying "We're in a hole - if only we
had a bigger digger".

• Method 2 (Systems analysis)
Talk to the user, read what they read, talk to their customers, talk to their
colleagues, ask them about the calibre of staff, the cost of mistakes, what the
competition is doing, what causes 90% of the hassle, what goes wrong, how
standardisation would help, where could they usefully use more flexibility, where
could they usefully use stricter standards. Look at and count for yourself the
volume of data and transactions. Pester them about the details of the forms they
process.140 Find out who provides the data they work with. Find out who uses the
information and communications they produce.

Now think, drink141, scribble,
crystallise, re-visit and discuss.

Now clarify your vision.

Now present your vision.142

WCPGW?
Systems analysis takes time, is
intrusive, doesn't produce instant
results, offers alternatives not
definites, opens up possibilities
that require - deep breath - decision making.

Bridging the gulf
So there's a tension between those with the need for instant gratification (them)
and those with the vision of a new future (you); the tension between the carry-on-
as-we-are types (them) and the what-a-can-of-worms (you); the tension between
the 'don't even think of rocking the boat' brigade (them) and the champions of

On a clinical assignment I was looking at
the waffle that was being touted as so-
called 'best practice' governance as
background to the main task. The Real
Programmer in me, disgusted at this tripe,
invented a better system which
transformed the motivation of the project
from "how do we 'comply' with the rules" to
"strewth what a shambles - we can see
exactly what needs to be done now".

Programming Version 0.4 Page 133 of 356

143 Believe it or not, this management problem was 'too difficult' to solve and I never went
back to do the implementation phase.

144 All the anecdotes in this book are real.

carefully considered change (you).

What to do?
• First get paid for your feasibility study/design/report. The more you've charged

for it the more seriously the conclusions and recommendations will be taken.
This isn't a joke but a serious observation. (Work back to how you split the
systems analysis/consultancy from the implementation aspect. Impressive
presentation is vital. A clear agreement of what you'll be doing and what it
will cost up-front in writing coupled with an informal overview to whoever is
pushing for change - focussing on what they see the benefit to them will be.)

• Get the client to expose problems ("The warehouse manager observed that few
if any of the warehouse men could be relied on to read and write English"143)

• Get the client to think they've made worthwhile contributions by saying so at
the time and in your report even if you don't follow that path. "Barcoding as
suggested by Henry initially looked like the ideal answer to solving the but
further investigation unfortunately ..."

• Learn the technical lingo, 'share' their frustrations, be on their side. Sneak in
some brainwashing of the advisability of getting it right first time. - "We don't
want a repeat of..."

• If necessary, make up illustrative disaster scenarios and present them as they
actually happened to you. - Your client then gets a warm feeling of superiority
"We'd never be that stupid Ha Ha!". Be clear what point you're trying to make
and how it relates to your almost superhuman talents and the clients own
predicament.144

Overall you're looking for a reaction of 'Rome wasn't built in a day. When it comes it
will be fantastic' rather than disappointment that you've raked over old ground,
reopened old wounds and told them what they knew already.

Review
How about that! Systems analysis in 1000 words. When you do the necessary reading
up of the details don't forget the bit about bridging the gap which seems to get left out.

As with systems development, so with this book. The ordinary person thinks the
job is to get to the top of the hill as quickly as possible. The real programmer
and engineer understands there first needs to be a survey of the whole mountain
so that you can then build the best route. (For values of 'best'.)

Programming Version 0.4 Page 134 of 356

145 The quality manager of an electronics company asked me "how to analyse and present
defects which were rising alarmingly". "We make 100 a month and faults are coming back
to from customers in ever increasing numbers. This fault rate is up to 6 a month and
increasing - that's 6%." 'Percentage' rings the reality check alarm bell! These were failures
in service. What would be the 'percentage fault rate' next month if they only made 6 next
month? Eventually light dawned.

146 Alert! "never" sounds like a sweeping statement in need of examination. Users are always
giving you this story - be very very sceptical.

147 WCPGW? Your Aunt Augusta gives you a CD you've already got in your collection.
Whether this matters or not depends on the exact purpose of your catalogue. Are you
referencing actual bits of plastic as in a lending library, or the information on them for
reference?

Don't be afraid of facts and statistics, but always do a double reality check on the
important ones: First for the numbers and second for where they lead in physical and
monetary terms. Whenever you see "percentage" go over the logic of what it really
means.145

To back up the doing-things-with-data you need to get a very good grip on what that
data is. Now we can get started on the database, as opposed to the application, design.

CD database
We've already seen the tables listed with their fields and talked about how they are
related. Now we need to make this a bit more technical.
• Overview : Three tables. CD linked to GENRE and linked to ARTIST. This means

we can have one GENRE record maintained for many CDs. Also we can have a
single ARTIST record maintained for multiple CDs.

• A CD will never link to more than one GENRE (In fact always exactly one.)146

• A CD could link to 0,1 or a number of ARTISTS.
• A CD has a given unique ID being the record company's catalogue number.147

• GENRE names are unique but not necessarily permanent. Therefore we need an
indelible ID for the sole purpose of being the GENRE primary key.

• We probably want to list GENREs alphabetically so a secondary unique key using
the name would be efficient.

• ARTIST names are almost certainly unique but not necessarily permanent.
Therefore we need an indelible ID for the sole purpose of being the ARTIST primary
key.

• We probably want to list ARTISTs alphabetically so a secondary unique key using
the name would be efficient.

• Dates are probably only relevant to the nearest year and could be missing or vague.
Integers will do the job - Date fields are not necessary (And may introduce
unnecessary complications.)

• Field lengths for strings ... Systems analysis, ie sampling, will tell you.
• We may want to writes notes about an ARTIST and CD. Not sure how much but

could easily be more than 1000 characters but probably not more than 5000

Schema

Programming Version 0.4 Page 135 of 356

148 Most, if not all, databases have a special 'autoincrementing' field type.

The relationships between the tables can be described as shown below:
GENRE 1 to many CD many to many ARTIST (spoken)
GENRE 1:n CD n:n ARTIST (typed)
GENRE --< CD >-< ARTIST (sketched)

What about the fields and keys necessary to implement this?
GENRE.id - Unique key (nonce) (accessed from CD.genreId)
ARTIST.id - Unique key (nonce) (accessed from ...???)
CD.id - Unique key (uses real world data) (accessed from ...???)

A nonce is a bit of data without any real-world meaning. It could be random or
sequential.148 (The pattern of the key to your house is a nonce - its value is important
but bears no relationship to anything else.)

Why are we having a problem joining CD to ARTIST when CD to GENRE isn't a
problem? We can see if we take an example CD with multiple artists.

CD.name : Country music grates - The worst ever C+W.
CD.genreId : 15 (ie points to the Country and Western row of GENRE)
CD.artistId : 567 and 345 and 222 and 103 and ...

Whoa! In CD.genreId we could simply put in the appropriate integer but CD.artistId isn't
a single a number - 'lots' would be a better description. The same problem arises when
an artist appears on more than one CD - we need a list.

This problem arises when there's a many-to-many relationship. The way round it is to
have a list in the middle, which of course this being a database, becomes a table in the
middle. Here is how it works with a middle table called CDAR

CD CDAR ARTIST
.id 1:n .cdId

.arId n:1 .id

We now have two 1:n relations instead of one n:n. We know how to deal with 1:n
relations so we've solved the problem. Let's see how we can look up the artists on our
worst country and western CD ever.

We have the appropriate row from the CD table. Use the CD.id to look up the index to CDAR and fetch all rows from
the CDAR table with a matching .cdId. With each of these (zero, one or many) rows, use the index to the ARTIST table
to locate the ARTIST.id that matches .arId.

This gives us a list of artists. We can similarly work in the other direction. Given an
ARTIST.id we find all the matching rows in CDAR and use the .cdId field data to
reference the appropriate CD records.

Review
What we've just done is extremely important. It is a bore and a complication to add a
table-in-the-middle to simplify many-to-many relations but absolutely necessary.

We've been developing a database schema which I use to mean a written (in text)
description of a database. This is pretty much the same thing as a database model, a
term I use for the concept and sketches of how tables relate.

Programming Version 0.4 Page 136 of 356

149 In my opinion a database design is easy to sketch but difficult to perfect. This is one of
those tasks that needs a days and nights to mature.

150 Pronounces Es-kew-Ell remember.

You now know how databases work and the theory of how to design them. It's a far cry
from the glorified spreadsheet that most people think of. The power of the relational
database is great for tackling large data models. If the design is done right in the first
place (that's a very big 'if', you need a lot of practice149) then it will be able to grow and
adapt as the real world changes. On the other hand a poor design will be awkward to
implement in the first place and a nightmare to maintain.

Terminology refresher : Field and Column are the same thing. Record and row are the
same thing. Row and column are the 'official' relational database terminology but most
people use the terms completely interchangeably.

Now you've got the background you might want to do a bit more research on the
technicalities of databases for yourself as I've left out several things that happen behind
the scenes.

SQL
Nowadays most people will be
using Structured Query
Language, always referred to as
SQL150 to create their database,
control access, perform enquiries
and make updates. Although
SQL is 'standard' each
implementation has its quirks
and features so you need to
check up your documentation.
Here is a flavour of SQL as used
for enquiries:

select id, name from CD where name like '%best of%' order by name

select count(id) from CD

select CD.name, CD.id, GENRE.genre
from CD join GENRE on GENRE.id=CD.genreID
where GENRE.genre = "Country and Western"

select * from ARTIST
where ((ARTIST.birthYear >= 1960)
 and (ARTIST.birthYear < 1970)

)
order by ARTIST.name

select birthYear,count(id) from ARTIST
group by birthYear
order by count(id) desc

If you don't have a SQL database already
installed then now is the time to download one.
(Try MySQL - it is 'free', very good and used by
millions.) Download and read the documentation
too.

There will be hand's on exercises in this section.
The table definitions are given in appendix
@@@

Programming Version 0.4 Page 137 of 356

select name,year(now())-birthYear from ARTIST
where (deathYear IS NOT NULL)
order by name

• SQL is plain text, it doesn't usually
worry about white space. It's often
clearer to put each clause on a
new line.

• Exact syntax may vary in detail. It
may vary between versions of the
same implementation.

• Most implementations of SQL are fairly casual about case. (You will often see
documentation with the SQL keywords in capitals - That might be OK when
highlighting the syntax in user documentation, but in use these keywords should
be in the background because they're so obvious when you know about them that
they don't need emphasis. On the other hand the main players are your tables and
their fields. Personally I capitalise tables and use a lowercase start to field (ie
column) names.)

• How quotes are handled can vary subtly between implementations and you may
come across strange variants of single quotes. Make a study of your
documentation to get their use absolutely clear.

• Extracting information always starts with select something from somewhere.
• Notice that in some of the examples fields are referred to in the TABLE.fieldName

style and in others just as fieldName. The second form works providing there is no
possibility of ambiguity....

• ...One way of avoiding ambiguity (which I use all the time) is to prefix all
fieldnames with a couple of letters from the table name. For so for example all the
fields in the CD table will be called cdSomething - cdID, cdName, arName, geId.
This means the you can't use the wrong field by mistake.

• where is a key word used at the start of the section that defines the criteria for
selecting rows. A very common condition is when you want a single record and
know it's unique id as in ... where cdID = 66 ... It's a good idea to put brackets
round the active bit of the where clause and sub-clauses for the reasons we
discussed way back in chapter @@@

• In like '%best of%', % is the wildcard character. (* is used for 'all fields').
• The join key word is the start of a definition of how we will connect another table

to our spine query. The syntax is join newtable on somefield =
newtable.somefield. Joins are the heart (and most puzzling bit) of relational
database use. If you can see what's happening in these examples then that's all
you need to know for the moment.

• There are various built-in statistical functions such as count(), avg(), stddev() which
work on a column at a time.

• order by (which can be modified with desc for 'descending') sorts the results after
extracting them from the tables. You can specify more than one column to sort on.

• group by aggregates rows into categories as given by the column specified. In the
example we are counting the number of artists born in each year. (In this example
the built-in function count() needs an expression so in this case we give it anything
to keep it happy, but we might do more complex sums.

• The final example, which tells us how old artists were when they died, is a bit

In my experience clear SQL guidance is
difficult to find. Documentation has holes
or is badly organised and tutorials expect
you to be really enthusiastic.

Programming Version 0.4 Page 138 of 356

tricky. select means here come the columns to retrieve. name is ARTIST.name, that's OK. Umm the next column is
complicated, it appears this needs to be calculated as we go along. now() is the built-in function for current date and
time. Take the year part of that using another built-in function. Now subtract ARTIST.birthYear and that's the result for
this column/row.

• Null is an important 'value' in databases. It means "no data". In the final example
we have a where clause which weeds out rows that don't have a year of death.
Null isn't (usually) the same as 0 or an empty string so be very careful. You'll have
to be especially careful when joining tables with nulls in the joining conditions.

At last we're doing something useful.
In just a moment we'll look at how to put data into the database and how to interface
with a front-end or application program. But stop for a moment and think about the
implications of having a 'standard' method for interfacing with a database.

It means that you can write your application and design your database independently
of the database engine. (That's the theory anyway - There may be wrinkles, and of
course you only find out about them at the time, but no need for major surgery.) You are
not stuck with a particular vendor or having to use a particular manufacturer's
overpriced and badly supported system. You can add your bit to a client's existing
database - imagine your application that took postcode information to produce efficient
delivery routes having to get data from the customer's existing database not to mention
they'd have to manage another completely strange database system. It mean you can
develop just the once for all the various SQL systems out there.

This is an example of a layered approach where your application layer sits 'on top of' a
database layer. You can spend all your development time on your application layer and
treat the database as a black box. Some people think ahead and build-in a bit of 'glue'
to cope with adapting to different databases consisting of translation or special feature
handling functions which can be tweaked according to the underlying database.

Hooking up to the engine
So far we've been talking about how databases work inside, and the type of queries we
can do, but not looked at the practicalities.

You know that when the computer is switched off the data in the database is stored in
files. You also know that you need to run a program to get at that data. There are two
ways to run this program:
1 By incorporating a large library of database functions into your program. These will

do the database work for you with a few calls from your code.

 The disadvantages of this are
• Your program is the database program. This means it is difficult for it to

interact with any other application and share data. If you are sharing data
then all programs will need to change version numbers at the same time.

• Your application is swollen to many times it's non-database size by the
overhead of all the database code. Each program has a copy of the baggage.

• Customers have to use your make of database or you have to get a copy of their
database program to test - which may be expensive - and you have to keep

Programming Version 0.4 Page 139 of 356

151 Lookup ODBC for steps to mitigate this issue.

upgrading to the latest version of the database.151

2 By running a separate database engine or database server (DBMS : Database
Management System) that can inter-operate with your applications.

The advantages of this are
• Each of your programs need much less database code
• The database is available for other existing and future applications to use.
• The customer is easily persuaded that your program is 'standard' and will be no

bother to look after and work with.
• Your customer's database strategy is not dictated by your application.

The DBMS might run on the same computer as your application or on another one
(or even be distributed amongst a number of servers.)

Programming Version 0.4 Page 140 of 356

152 I'm using 'customer' not 'client' because client has a specific computery meaning which
could be confusing in this context. When dealing with customers you must be careful not
to use words with technical and ordinary connotations unless everyone is absolutely clear
about use. (Even then avoid if possible - somebody down the line will get the wrong end
of the stick with all sorts of consequences.)

153 From time to time I ask my customers to give me a backup copy of their data to make sure
(a) the backups work and (b) I can still get their systems working from scratch in case of
disaster recovery. Also it is handy to have reasonably up to date data if you're closely
involved with support.

Technical background - a diversion

You may recall a long time ago I roughly indicated that your text gets turned into
something more suitable for the computer to operate with. We need to look at this a bit
more to explain linking of code libraries. The short story is that there are ready-to use
libraries that you can stitch into your program.

What this means is you can
• weld outside code tightly into your program to give a monolithic package
• or rely on ready-to-run utility libraries being available on the customer's computer
• or get your program to interact with a serving program explicitly set up on the

customer's152 machine.

Database administration
Unless you have very specific needs you will be using an interface to a DBMS (Database
Management System) You will use manual utility programs or functions to create the
empty database, allocate access rights, import and export bulk data, and generally poke
around. We'll call this bit 'administration'. Who does the administration? An
administrator of course. Err... Of course? Occasionally a customer will have somebody
who is given the job of database
administration. Out of these few, some
smaller number will be clued-up about
the value of the data and the
importance of looking after it and have
the responsible attitude and skills to do
real administration. For the rest they
'do a backup' but that's their limit and
they don't know how reliable it is.

You'll be using database administration tools quite a bit. While you're doing so consider
what the implications for users would be, how you will document any actions that may
have to take, perhaps once in a blue moon. How will you make it easy for them? How
can you get across the consequences of carelessness or deviousness? Whatever you do,
be sure to document privately the things that matter in case the plot is lost.153

The actual or anticipated competence of
the customer's database administration is
very important to the programmer. If staff
can't be relied on then you need to build
robustness and fail-safeness into your
program.

Programming Version 0.4 Page 141 of 356

154 Remember Real Programmers carry notebooks. Here is one self-protection reason. At
some early stage you will record a meeting where it is agreed who will carry the can for
security and their name will go an all security related documents, procedures etc.

155 I also have a two screen installation (sharing one keyboard and mouse) where I can have
documentation displays on one for instant reference while working on the main screen.
Highly recommended.

Administration tasks
• Making sure the file system is suitable, secure and

data is backed-up. A whole lot of memory is often a
good thing on a machine used to host a database.
Make a record of the essential configuration points
so you can re-create quickly in an emergency.

• Take a long look at permissions and the
practicalities of access control.

At some point you'll need to consider which functions
will be packaged in an idiot-proof utility and which parts
the user will have to fend for themselves.154

Building the database
This is the easy part. You have a schema sketched or
typed. The DBMS will have an administration tool which lets you create tables,
allocate key fields to indexes and report the database structure.

There are graphical tools which some
people prefer and can be handy if you
like pretty documentation. These
might be fully integrated with the
DBMS or for documentation only or
capable of working
cooperatively. At the early design
stage I prefer pencil and paper - it's a
lot quicker and the emphasis is on the
concept not the presentation - you can
tidy that up later.155

Database operation
Sorry. That's all there is to creating a database. The hard work was the design.
Because you don't yet know how to write a program to make use of the database we'll
have a play using the DBMS administration tool to simulate the sorts of activities. (To
do this you'll need to create the CD database as described in appendix @@@ then
return here.)

The code shown here is to be typed into the SQL window or prompt.

Genres
Lets add some genres. Here is the SQL. I expect you can see what's happening: The

A lot of pretty documentation is overrated.
Clarity and accuracy trump presentation
any day. Remember I said you needed a
really cast-iron filing system.

One useful purpose of writing
documentation, especially the first draft of
the user guide, is clarifying areas which
you hadn't really looked at hard enough in
the first place and revisiting parts of the
system you hadn't been working on for a
while and looking at them in a new light.

If an organisation loses
it's data or suffers a
security breach and you
had a hand in setting
things up then some
nasty person might look
to you for financial
compensation! There's
more to programming
than coding.

Programming Version 0.4 Page 142 of 356

156 My DBMS (MySQL) or perhaps the administration utility (phpMyAdmin) decided for itself
to convert my choice of upper case table names to all lower case. Grrr.

first line sets geId to 0 and geGenre to Classical Symphony. And so on. Except
something fishy is going on with geID.

INSERT INTO genre VALUES (0, 'Classical Symphony');
INSERT INTO genre VALUES (0, 'Blues');
INSERT INTO genre VALUES (0, 'Jazz');156

Now have a look at the data to see what's happened to the geIDs. You should see them
as 1,2 and 3. That's the autoincrement function at work. If you try

INSERT INTO genre VALUES (2, 'Folk');
you should get an error as you've deliberately specified a value for a unique key which
already exists.

CDs
INSERT INTO cd (cdId , cdTitle , cdSubTitle , cdGeId , cdNotes)
VALUES ('CD 53002', 'Django Reinhardt',

 'Giants of jazz - The gipsy genius', '3', '24 tracks');
This is similar but the field names have been explicitly listed before the values.

INSERT INTO cd (cdId , cdTitle , cdSubTitle , cdGeId , cdNotes)
VALUES ('CACD 1013', 'Beethoven',

 'Viol concerto (D op61) Romances 1(G op40),2(F op50)',
'1', 'Using period instruments');

Query?
The following query should report two rows and two columns.

SELECT cdTitle, geGenre
FROM cd, genre
WHERE geID = cdGeID

Hurrah! A relational database in action. (Just to remind you that the code you had to
write to provide this functionality amounts to a couple of dozen lines.)

SELECT cdTitle, geGenre
FROM cd
LEFT JOIN genre ON geID = cdGeID

This should produce exactly the same results.

The first query was a bit of a shortcut. The essential relation geID = cdGeID is the
same it is just that WHERE can guess that we would write the join out longhand if we
could remember the correct JOIN syntax.
• Notice that = sign. It's a 'same as' not an assignment.
• Can you see the usefulness of prefixing fields to identify which table they come

from
• JOINs come in various flavours that unfortunately combine subtle differences with

complexity - and no two DBMSs seem to implement exactly the same set.
• Have a look at your DBMSs documentation and put a bookmark in the place as

you'll need to go back to it quite a few times. There are wrinkles and gotchas.
• Track down a book on SQL and see if you can make sense of the examples.
• @@@ gourmets

Artists
@@@ add artists

Programming Version 0.4 Page 143 of 356

@@@ connect the join
@@@ query

Review
Modern databases are fast and easy to use. I suggest you rush down the library and
have a look at the database books there to browse lots of examples. You'll come across
some syntax differences from your particular DBMS, don't worry at this stage you're in
need of quantity in order to get a feel for design and style of database operation.

In a couple of chapter's time we'll look at how to build applications using a database as
a back-end. (@@@ Will we???) We've had a taste of translating the user's needs into a
data model - there's more - but the good news is by working at this high level you can
create comprehensive systems very quickly.

The next chapter is going to be a complete contrast. It's time to sharpen up YCPL
coding skills.

Programming Version 0.4 Page 144 of 356

157 See page xxx in chapter xxx @@@

158 I speak from long experience. Moving and copying files in a GUI over the phone is a
nightmare.

11. User interfaces

Gotcha - Users are assumed to be people but might be programs.

In one way or another a program exists to serve a need. That need might be a person
looking up diary dates or a program asking if any email is waiting to be delivered.
Programs that run in the background and wait for requests are called servers. Programs
that are called to do something they specialise in as required are called utilities. In
both cases there are typically two types of interface: One for administration and
configuration and the other for doing whatever it is the program does. The distinction
can become blurred. We will come back to servers and utilities later.(@@@will we?)

Where people interact directly with programs we can use the old style 'terminal' type of
a typed conversation (called a command line interface - CLI) or a WIMP (Windows Icon,
Mouse Pointer) interface, called a Graphical User Interface or GUI for short. You need
to be able to work with both styles and select the most suitable on a case by case basis.

Comparative example
On a *nix system there is a command called ls. Windows uses the dir command to do
the same thing. Both provide a list of files in a directory.
• The result is plain text
• The operation can be tweaked using cryptic flags on the command line
• Because they use StdIn and StdOut157 they can be easily called by any other

program that uses StdOut and the results passed to any other program that uses
StdIn. This means the results are not just for human consumption - for example
they might go to a backing-up program for further processing.

Or you could use a graphical file manager.
• Lots of scope for prettification
• Settings controlled by menus and mouse drags
• Large lists can be navigated easily and sorted in-situ
• Mouse clicks can make interesting things happen instantly

If I am on the phone to you and I want
to give you precise instructions about
copying or moving files it is lot safer to
do it using the CLI. I can say things
like "type d e l star dot t m p" with some
confidence that you've followed my
instruction.158

Myth: GUIs are 'obvious'. No they are not.
What they are though is relatively
standard so that once someone has learnt
how one application/OS operates then
they are able to guess how others work.

Programming Version 0.4 Page 145 of 356

159 Hey! Isn't that a very good reason never to use spaces in file or folder names. On my
computer, courtesy of Microsoft there is a very important directory called "Program files". I
can't use the fundamental command cd to change directory without specially putting it in
quotes. Ta very much - not.

160 Don't forget to document this clearly. Sometimes this flexibility is a bad idea - for example
if there might be confusion between exactly which of a number of identically named files
in different directories or fall-back options are used.

Command line basics
Programs that use the command line may just use it for initial configuration in which
case it is almost like a function where you give it a set of arguments following the
name. YCPL will probably have a method of being able to read these parameters. The
convention is that arguments are separated by spaces.159

Generally there are two types of argument: Flags which tend to start with a hyphen in
*nix-land or a slash in Windows-land and variable parameters such as file names. It is
worth making a quick study of the style of parameter syntax being used by your target
audience. You could use key words as flags but often these can be confused with
variable parameters.

Commands object
What you are normally given to work with inside your program is an array of strings and
a count of the number of items in the array. Over to you...
...You're in charge, you've seen the style of parameters used...
...decode, validate, guess what the commands refer to in the real world and check for
consistency.
• Best done in one place, inside an object perhaps.
• Do you care about case? - Hopefully not - It really is annoying when -x is

acceptable but -X is rejected. (And difficult to document as x and X look pretty
much the same.)

• What do you do if commands are not understood or consistent?
• Are you sure whitespace¤ and control characters are being removed before they

get to you?
• If there are variable parameters with whitespace in them

• Do you insist they get put after the flags? (Perhaps no need - just a thought.)
• Do you need whitespace as part of the parameter. eg File names with spaces

or text with tabs? Special measures will be required.
• How will you deal with parameters in the form key=value? The = might have

whitespace around it or none, on either or both sides.
• How flexible are you in guessing what the user means. For example if you are

given just a filename where will you look for it? Just the current directory or in the
search path or in some special locations?160

• How flexible are you with flags? Do you let the user use all of /v, /V, -v and
/verbose for example?

The first of these points is not only useful but important. It is a layer that conditions
and buffers input. It enforces rules and decodes text into logic and acceptable
parameters. We will see this again in GUIs where a good grip of events is even more
important.

Programming Version 0.4 Page 146 of 356

161 Note this is in UK date standard. You'd mention this in the user guide and other places of
course. You might also offer an additional flag say -u for US-style date order and re-
interpret the date parameter as mm-dd-yy.

Command line decode example
Do you recall the diary we were writing
back in chapter @@@? The
parameters we might want are the
name of a data file, a date and the
maximum number of lines to show on
the screen. All should be optional.

Defining the interface
Let's define some command line syntax
then write a handler. How about starting with maximum number of items to show on a
screen? This might appear in the user guide as:

Max no lines to show :
l=nn

Is that as clear as we can make it? If for the sake of 30 seconds thought we can avoid a
single support call we have come out ahead.

Is that as simple as we can make it. We could 'cheat', and so avoid the whitespace-
equals issues by saying that if we come across a number in the range 2 to 99 we will
assume it is the maximum number of lines. We can get away with this if won't clash
with any other arguments. In this case the date might be a problem. There are two
ways out of this: Relying on position or strict control of whitespace.

Date to start from:
dd-mm-yy161

We need to declare our stance on converting two digit years to four digits. Perhaps we
should silently allow four digit years. If so what limits do we set? All this is part of the
UI so has to be available for reference.

Filename
filename

If the user specifies "myDiary.dat" do we need to preserve case? (Yes on *nix, except we
might 'be helpful' and always crash case¤ so it doesn't matter.). If the user specifies
"mydiary" do we assume they mean "mydiary.dat"? Once again the details of the
behaviour and the defaults need to be explained.

The final bit of command interface definition needs to be messages that get returned to
the user. We might chose to be silent except for outright errors. We could display a
handy help message giving usage instructions.

Design and build the CLI object
Overview

The object will be created from an array of parameters, we interpret and validate,
display any error messages then leave it in existence in order to be interrogated by
the remainder of the program.

Notes
We would normally put extensive documentation in the code as the definitive

The UI includes the user guide and
reference documentation. It is not just the
bit inside your program that offers options
and results and processes input. You
might throw in on-line help and hints as
well.

Programming Version 0.4 Page 147 of 356

162 You might just be able to get this converted into user-friendly format automatically by
standard documentation tools.

163 Fudge uses all sorts of imaginary 'system' functions such as Print(), GetTodaysDate() and
so on. YCPL will have something along these lines but may be used differently. Note also
that types are rather vague which may be contrary to YCPLs philosophy.

version of information for the user.162

Fudge163

object CLI
 field maxLines : int;
 field startDate : date;
 field fileName : string;
 field ok : boolean;

constructor CLI(){
 // sets up default values
 this.maxLines = 20;
 this.startDate = getTodaysDate(); // assume system function
 this.fileName = "diary.dat";
 this.ok = true;
}

constructor CLI(Parameters:array of strings,ParameterCount:int){
 // the useful constructor that takes command line parameters
 CLI(); // call default constructor
 // now interpret the parameters
 // NB often parameter 0 is the name of the program itself
 // so the first actual parameter is 1. See YCPL docs.
 // Assume here possible [0],[1] and [2] for up to 3 parameters.
 ppointer = ParameterCount-1; // last one
 while(ppointer>=0){
 pstring = Parameters[ppointer];

 if(pstring.Contains('-')){
 ok = ok and DecodeDate(pstring);
 }else{
 if(pstring.LooksLikeInteger()){
 ok = ok and DecodeMaxLines(pstring);
 }else{
 ok = ok and DecodeFileName(pstring);
 }
 }
 ppointer++;
 }
 if(not ok){
 DisplayUsageInstructions();
 }
}

function DecodeDate(DateString:string){
 // interpret dd-mm-yy
 // return a boolean false if doesn't look like a date
 d = DayStringToDate(DateString); // Fudge.
 if(d.IsRealDate()){
 this.startDate = d;
 result = true;

Programming Version 0.4 Page 148 of 356

 }else{
 result = false;
 }
}

function DecodeMaxLines(LinesString:string){
 // interpret max number of lines
 // note (to show alternative UI technique) we display error
 // as well as returning false
 i = StringToInteger(LinesString); // Fudge
 if((i>1) and (i<100)){
 this.maxLines = i;

 result = true;
 }else{
 Print("ERROR: " . LinesString . " is out of range.

 Default max no lines used");
 result = true; // what!!! This is naughty but we've just
 // ignored the user's request and carry on with the default
 }

 function DecodeFileName(FileString:string){
 // similar to DecodeDate() or DecodeMaxLines
 // code left as exercise for reader
 }

 function DisplayUsageInstructions(){
 Print("Usage ... etc etc ..."); // StdOut
 }

// ---- get at results of decoding ----
 function DoWeHaveUsableCommands(){ result = this.ok;}
 function GetMaxLines(){result = this.maxLines;}
 function GetStartDate(){result = this.startDate;}
 function GetFileName(){result = this.fileName;}
}

This code is now in a black box and we shouldn't have to worry about it or have to wade
through it while dealing with the rest of the code.

cli = new CLI(params,paramcount); // args from system
if(not cli.DoWeHaveUsableCommands()){Die();} // stop!
...
loadfile(cli.GetFileName()) // pass one part of cli
...
display(cli,...); // pass whole cli object

This method beats
occasionally enquiring what
a parameter is as you
require it in the code hands
down.

Review
* uguide @@@

As I've already mentioned, having a buffer layer
between the inputs (and possibly outputs) and the
program logic applies to GUIs as well. Because many
GUI paradigms make it easy to skip this you may not
realise the possibility of using it where appropriate.

Programming Version 0.4 Page 149 of 356

164 And books. One of the distractions I've been trying to keep you away from is unnecessary
detail and trying to jump to the end. Bit by bit we'll be finishing off the whole picture, so if
your favourite bit of essential programming technology hasn't been covered yet that's
probably deliberate.

165 More on protocols in a later chapter.@@@???

166 You have to deal with repeat web page submissions as a matter of course. See
Idempotent¤.

* careful design
* parsing - skills
* package cli logic

Where am I?
There are some programs that accept any commands at any stage (or only use them at
the launch stage anyway). What about a program that has say a Calibration mode and
a run mode? The user needs this information clearly but unobtrusively displayed to
them. A typical method is to adapt the prompt by putting a label or status information
on it. For example : configuration>

Good UI design depends on being able to group together functions so that the user is
focussing on one activity with all they need for that activity to hand but no superfluous
distractions and no immediate access to unrelated actions. This applies to CLI and
GUI.164

@@@mode

More feedback
What should you do if your program takes a long time (for values of long time) before
appearing to do anything? It's a really good idea to provide progress indication of some
sort. Sometimes you want the opposite, particularly if your utility is being managed by
another program and it doesn't want a load of progress messages mixed up with real
results. - Provide a flag to switch off information messages. Sometimes you want to
know what's going on behind the scenes so you may provide a flag to switch on extra
messages or logging to a file for later analysis.

'Is something happening?' applies equally to CLI and GUI. With programs running
locally (or where the action happens locally) it is normally very easy, and expected, to
show 'something's going on' with a progress bar or flickering lights. (See Time left in
glossary for handy tip.) With CLI you can end up madly scrolling the screen if you don't
moderate your progress feedback. A major problem exists with web page fetches,
remote processing controlled using web pages and uploads using web pages to submit
large files. This is because the HTTP protocol165 is whole page or nothing. From a UI
point of view you find users think nothing is happening after clicking on 'process my
order' or 'upload my file' and click again with all sorts of consequences.166

Completion status

Programming Version 0.4 Page 150 of 356

167 If you're new to it there is a Get started with Javascript appendix.

168 When creating your own code "WCPGW" is a handy mantra.

If your utility fails in some way when being used by another program how will it flag
that error? (Imagine your program checks for changed files and provides a list to a
program that will back them up. If it keeps failing then the backing up program is quite
happy and reports 'nothing to do - all backed up'. YCPL and operating system may
cooperate on this matter or you might have to find another way to flag ok/fail.

Graphical UI development
We are going to develop a search and replace program to investigate some of the issues
involved when creating graphical interfaces. Everyone join in! - This is in Javascript.167

• Create a file (in your well organised filing system) called SrchRepl1.htm with the
following code.

• As you type in each line ask "What is this line doing? Why is it formatted like it is?
What does it represent?" 168 (RegExp will be discussed in a little while.)

<html>
<head>
 <title>Search and replace 1</title>

 <script LANGUAGE="JavaScript">
 function DoSearch(){
 // what happens when we command s+r with
 // the go button
 document.form1.area.value = DoReplace(
 document.form1.srchStr.value,
 document.form1.replStr.value,
 document.form1.area.value);
 }

 function DoReplace(SearchFor,ReplaceBy,Body){
 // utility function to wrap regexp
 // search and replace
 rexp = new RegExp(SearchFor,"gi"); //g=all i=ignore case
 return Body.replace(rexp,ReplaceBy)
 }

 </script>

</head>
<body>
 <form name=form1>
 <input name=goBut type=button value="go" OnClick='DoSearch()'>
 <input name=srchStr type=text size=10>
 <input name=replStr type=text size=10>
 <textarea name=area rows=3 cols=40>
There is a young carver from Cressing
With curious habits of dressing
He always wears shorts
Of various sorts

Programming Version 0.4 Page 151 of 356

But never a thong - What a blessing</textarea>
 </form>
</body>
</html>

When you point your browser at SrchRepl1.htm you should see a button, two empty text
boxes and part of a limerick. These graphical elements are called controls. Just for fun
put text to search for in the first box, something to replace it with in the second and
click the Go button. (If nothing happens add a line alert("here"); to the Javascript
code and move it down until it stops displaying a pop-up. NB You also need Javascript
enabled in your browser.)

You've probably thought of some improvements to the UI. We'll have a look at those in
a moment, but first let's look at why a mouse click on a button does anything.

Events
When your phone rings you pick it up. Or perhaps the answering machine kicks in. Or
perhaps it rings until the caller gives up. In the first two cases an event causes an
action. In the last case the event happens but nothing comes of it. Clicking a mouse
button is an event that the operating system recognises. What you have to do is tell the
operating system what you want to happen as a result. Unless you do this the event
will be thrown away.

The raw operating system events are mostly generated by the keyboard and mouse.
(There are other OS events such as connecting to the network, ticks of the system clock
and 'closing down!') The components in YCPL probably have more sophisticated
events. For example telling when a control gets or loses input focus or when it is being
created. (With a bit of simplification) input focus is the place where keystrokes go to.
In SrchRepl1.htm we've created a
button and told the browser (which is
acting as a surrogate operating system)
that if there are any clicks while over
the area of screen painted to look like a
pushbutton to call a function called
DoSearch(). That's what the
OnClick=DoSearch() is. Click is an
event (as defined by Javascript and
implemented by the browser with
cooperation from the operating system)
OnClick() is a method of the button
object which by default does nothing.
We can assign a function known as an
event handler to the OnClick() method to act on the Click event.

Reminder: OnClick is a variable which has the type 'eventhandler' so when you
code OnClick=foo() you are setting things up for future use not actually executing
the function foo().

There are more events than Click and different controls respond to different events. For

variable = function might not mean Set

the value of variable to the RESULT of function. I admit
it always has done until now, so this bit
may make you feel a bit queasy. Suppose
variable has a type of 'function'. Then you
can say variable foo is a reference to
function bar() by coding foo = bar().
Now should you wish to run the function
bar() you could instead run foo. OnClick is
normally set to a do-nothing function, but
in our program we've given it something to
do by referring it to DoSearch().

Programming Version 0.4 Page 152 of 356

169 There isn't a timer object in Javascript but YCPL may have on.

example a timer control169 doesn't care about clicks (It won't even show up on the
screen) but it will have an OnTimeUp event handler. For a start you need to look at
YCPLs documentation for events, event handlers and event model.

Event to action
I was very keen when dealing with CLI that you should try to insulate commands from
active routines. The same argument applies ti GUI. Not only is it clearer, but it is
easier to re-use code. A typical GUI style is to have more than one way of triggering an
activity. For example the 'save file' activity might be run (a) by picking from a menu, (b)
by clicking on a button, or (c) when the program finishes, or (d) when a new file is about
to be loaded 'on top' of the current one. That's four events and one action. It makes
sense to code the action part in its own function rather than duplicate the code.

The functions in SrchRepl1.htm are organised a bit along these lines.

Alternative : Event listeners
In an OO world an event is an object that can be passed around. Typically an object
will say to a component that it will handle certain types of events then implement those
that matter to it. That's two things:
1 Tell a component the object wants events to be passed on to it.
2 Do something with them.
This seems quite a good idea from the point of view of 'getting things done in doing-
things code' as opposed to whatever gets the initial message. Your 'doing-things' code
asks to be passed a copy of events but otherwise doesn't care about the UI. However
setting it up requires a lot more concentration. Java programmers note that you'll need
to get stuck into a number of examples before you become fluent.

Review
Graphical components normally receive events such as mouse moves and clicks and
also keyboard actions. These will be defined in YCPL's documentation.

The way actions are connected to events depends on YCPL.
• Assigning event handlers to otherwise null event methods
• Registering as an event listener with a component that might supply events of

interest.

It is often a good idea to separate the interface related code from the 'doing-things'
code. (Not always - keeping code together can make it easier to understand.)

Events are not limited to UI inputs.
Components typically come with three
main parts:
• Properties - What we've so far been

calling object fields
• Methods - Functions
• Events - Hooks to attach event

handlers

Components are ready-to-use objects
designed for programmers to use in
building applications. They will be
documented to tell you how to use them.
Many times you'll be able to use them off
the shelf, but you might also want to sub-
class them for specific requirements.

Programming Version 0.4 Page 153 of 356

Logical interface layout
Although you know that SrchRepl1.htm works, it doesn't get any marks for ease of use.
There are no clues to which bit is which and Go on a button could mean anything. Let's
smarten up the layout.
• Some proper indication of what the object of the exercise is
• Labelling the input controls
• More logical layout of controls. Button 'after' inputs.
• Grouping associated controls
• More informative button label
Note: When changing code and trying again in the browser you might want to force a
complete reload with Shift+Ctrl+R.

<html>
<head>
 <title>Search and replace 2</title>

 <!-- no change to javascript from version 1 -->
 <script LANGUAGE="JavaScript">
 function DoSearch(){
 // what happens when we command s+r with
 // the go button
 document.form1.area.value = DoReplace(
 document.form1.srchStr.value,
 document.form1.replStr.value,
 document.form1.area.value);
 }

 function DoReplace(SearchFor,ReplaceBy,Body){
 // utility function to wrap regexp
 // search and replace
 rexp = new RegExp(SearchFor,"gi"); //g=all i=ignore case
 return Body.replace(rexp,ReplaceBy)
 }

 </script>

</head>
<body>
 <form name=form1>
 <table border=0>
 <tr>
 <td colspan=2 align=center>
 <h2>Search and replace</h2>
 </td>
 </tr>
 <tr valign=top>
 <td>
 <fieldset>
 <legend>Controls</legend>
 Text to search for

 <input name=srchStr type=text size=10><p>
 Text to substitute

 <input name=replStr type=text size=10><p>
 <input name=goBut type=button value="Replace now"
 OnClick='DoSearch()';>

Programming Version 0.4 Page 154 of 356

170 See how many menus you can find on a single web page. Three seems to be the minimum
- grrr. (The reason is to keep your attention as you hunt for a needle in the haystack.) For
efficient applications you need your users to know where to find the bits they need
without a second glance.

171 How do you debug GUIs? - Find some users. It's not very scientific but often quite
revealing. The scientific, and cheaper, bit is being methodical about the possible inputs
and combinations.

 </fieldset>
 </td>
 <td>
 <fieldset>
 <legend>Text being worked on</legend>
 <textarea name=area rows=3 cols=40>
There is a young carver from Cressing
With curious habits of dressing
He always wears shorts
Of various sorts
But never a thong - What a blessing</textarea>
 </fieldset>
 </td>
 </tr>
 </table>
 </form>
</body>
</html>

I'm sure you'll agree that's a great improvement.
• There's a 'natural' left-to-right top-to-bottom flow about it. (It appears that when

people look at a web page (and we might assume also any screen) they do so in an
'F' pattern. Sweep left to right across the top, investigate the left side then creep
across a bit lower down.) Ignore ingrained habits at your peril! You'll be amazed at
how controls you think are 'obvious' can become 'invisible'.170

• Notice the label for the second input text box is not "text to replace". An easy
mistake to make. Even "substitute" is ambiguous. This example is particularly
knotty because we could end up writing an essay to clarify what's being replaced
and what's replacing it - at which point the user loses the will to live. Luckily we
can cheat with the convention that you specify what's to be replaced with what to
replace it with.

This is an important issue: As the programmer you know everything, but how is
the user supposed to have this knowledge? A bit of experience in interpreting
context, guessing and most of all clear instruction. ...Where does it say the
program will replace all occurrences?

• There was quite a lot of additional HTML coding. 31 lines instead of 11 in the body.
This is quite typical when coding GUIs by hand. It's quite important to get it right
first time otherwise you spend ages fiddling and debugging layouts.171

Validation and live logic?
WCPGW? Try replacing 'blank' with "x". The result is a mess. We can do something

Programming Version 0.4 Page 155 of 356

about this in two ways:
1 Do a validation check at the time the button is pressed and the procedure is

executed.
2 Do validation and consistency checking before the button is pressed.
(Or a combination.)

Add the following code to the top of DoSearch() then see what happens when there is
no search text.

if(document.form1.srchStr.value==''){
 document.form1.srchStr.style.backgroundColor = "yellow";
}

Striking, but only really a hint.

We could use the built-in
Javascript function alert() to
display a box with a suitable
message.

What about trapping blank
text before we get to pressing
the button? We can do this with the following alterations to the code:
• Leave the trap in DoSearch().
• Add a new function as follows

 function HighlightBlank(InputBox){
 if(InputBox.value==''){
 InputBox.style.backgroundColor = "yellow";
 }
 }
InputBox will be passed to the function by the caller. This means we could reuse
HighlightBlank() for trapping blanks in the replacer entry as well.

• Add the following inside the input tag for srchStr
OnChange='HighlightBlank(this)'

This hooks-up the OnChange event to the validation function. this in Javascript is
a way to say 'the object calling this method.'

You are now ready to try this out.
• If you leave the input blank it doesn't work.
• If you type in X then backspace-delete it you'd expect it to highlight... but it doesn't

until you leave the input box.
Ummm. We were hoping for something a bit better than that. There are two problems:
Not acting on the OnChange event until leaving the input box. (This is the official
behaviour for Javascript - other GUI building languages may be different.) and not
trapping leaving the input box blank without making any alterations. But at least
HighlightBlank() works when it is called.
• Change OnChange to OnKeyPress in the input tag and try again.
This works as advertised unless we use the mouse to jump to the second box.
• Add a second event handler in the input tag as follows:

OnBlur=HighlightBlank(this)
Now clicking directly to the second box shows the alert.

Review
The process we've just followed is typical of GUI input development although one hopes

DOM - Document Object Model is the way elements
are represented and manipulated inside a browser
document. The details vary a bit between browsers.
You will need to find then read the documentation.
However without this you should be able to twig
what the Javascript example is doing.

Programming Version 0.4 Page 156 of 356

172 And your grasp of specialist terms used by the users might not be so hot either!

to get it more nearly right first time.
• Search the documentation of your components for suitable events. (In many

languages you can sub-class components in order to hook to other events that may
be particularly significant. For example a list of files, derived from a list of strings,
might need to 'do something' if the files change behind the scenes.)

• Multiple events hook to the same event handler.
• Testing and debugging

is necessary. Never let
a GUI out before some
guineapigs have had a
go. Some people are
very mousey, others
love keyboard
shortcuts. Watching
people struggle with your 'obvious' and very clever GUI can be a but humbling.

Warnings about control by control validity checking
• It is possible to force the input focus back to an input control which has failed to

validate. This is not a good idea. If the user wants to waste their time on the rest
of the form then that's their problem. At the very least you have to let them get to
the cancel button.

• It is considered bad practice to have controls that magically appear when
everything is ready and checked. Buttons are normally disabled rather than hidden
until all other necessary inputs are complete.

• Experienced users tend to look at the keyboard or source document rather than the
screen.
• Make sure all the screens in your application 'work the same way'.
• Provide keyboard shortcuts so navigation doesn't need the mouse
• Validate inputs as they happen. You might consider an aural alarm if your

users are going to be working 'head down'.
• Inexperienced users need lots of simple cues and clues. How is that date entered?

Is that input marked "ID" an ID number, access number, service tag or what?
• Not everybody speaks English computerese172. In the exercise we've seen the

problems of everyday terms without introducing spin control, text area, tabsheet,
canvas and so on.

• Generally you're checking for basic sense not complete validity. Naturally you
want to do an accurate job but there may be things that you need to consult the
database about that will take too long to check and thus interrupt the inputting
process. For example if a part number is always a letter and 5 digits you might
check that format in the UI and leave the checking that the part actually appears
on the database until the form is submitted for processing.

Further warnings
• The validation as-you-go is for the benefit of the user and should be thought of as a

bonus for the programmer. Sometimes the programmer will rely on logic in the UI
to prevent executive commands being called in the first place but in general at

Getting the UI tested early-on is a good way to (a)
show eventual users that their new system is coming
along, (b) is an opportunity for you to check details
about the way they work (c) give the users some idea
of new ways of working that the new system might
entail.

Programming Version 0.4 Page 157 of 356

173 When you get to know the alternative options for UIs you'll easily be frustrated at some
applications you're forced to use every day. If you can't do anything about it at least try to
learn from it and wonder if there were any good reasons for the choices made.

174 Not as such, but possibly in combination with other business policies. Free, automated
web page accessibility checkers are available on-line so there's no excuse.

175 Far to common to ignore. I found out the hard way and had to re-do many of my lovingly
crafted graphics for an on-line questionnaire with friendly "Which cyclist is in the right
position : Red, green or blue" options.

176 So I wonder why the default Windows colour for active window frame is blue?

submit time the programmer has access to much more contextual information and
will be validating the whole submission.

• Web page programmers need to be aware that many users deliberately disable
their Javascript capability. So you can't rely on field-by-field validation anyway.

More about GUI design
Firstly have a look at how other people organise their UIs. Just because it comes in an
expensive or cool package doesn't mean it is a particularly good UI. It might be great to
use - but only once you've struggled to learn it. Or it might be really easy to learn but
frustratingly pedantic when trying to get quantities of real work done.173

The second thing is to see what specialist books and articles you can find on the
subject in order to extract handy hints. Be aware that one persons 'best practice' is
another's 'Dogs' breakfast'.

Although we've only discussed input as the UI there are important considerations for
the display and presentation of information. A lot of research has been done here : far
too much for you to absorb in one go. Some of it may be 20 years old and out of date.
• Not all people have good eyesight and may be using special software to help

interpret screens. This is particularly important for web pages where it may be
illegal to write web pages that disabled people can't use.174

• Clear presentation reduces confusion, support calls and disillusion.
• Find out how common colour blindness is.175
• In Ye Olden Days a terminal screen would have 24 lines of 80 monochrome

characters using a fixed character set. At least everyone knew every screen would
be the same. Nowadays life is more exciting and you can really make a mess.
There is a fair chance you are developing on a screen with a lot more real pixels
than users. It is easy to be carried away with the amount you can see on your
screen and assume users will see it too. It is extremely important that not only do
you try out layouts at the first opportunity on reduced hardware but you find a real
low-spec system. Of course it is possible that the nature of your application is such
that it's reasonable to specify a minimum specification - obviously there's a trade-
off.

• Use of colours and fonts can be really useful, but don't overdo it. Red 'comes
forward' while blue does the opposite.176 Use these features in a logical manner...

• ... All graphical elements should be used in a logical manner...
• ... Including the whole screen. Typically you always put status information in the

Programming Version 0.4 Page 158 of 356

177 If there is an interface designer or a ready-made design you still need to study the details
in order to understand how you'll be communicating with the user, what contextual
information they'll need, what parts are common and to be able to communicate clearly
with the designer when practicalities suggest alterations are required.

same place, menus on top or on the left and so on.
• Distinguish between:

• Icons Handy eye-anchors that help to visually distinguish alternatives
• Cartoons Graphics that adding interest for those with limited intellectual

abilities.
• Diagrams Instructional pictures illustrating an activity.

• Don't confuse instruction about a
feature with help about efficiently
using the UI itself. The former is
about explaining what the program
does and leading the user through
the relevant processes. The latter
takes the premise that the user
knows what they want to do but is
having a bit of problem with the
how.

Application UI structure
We've swiftly covered GUI for a single screen but in practice applications have a variety
of tasks and sub-tasks. Somebody has to decide how to divide up these tasks into
manageable units and how a user will navigate between them. There's a fair chance
that the nature of the task will get you177 most of the way to building a map of functions
(user activities not methods in code) and sketches of the interface elements and their
grouping.
• You may need to consider that some users might have options not available to

others. Do you segregate these in separate screens or blank them out for the
others? This depends on the nature of the tasks. For example a system
administrator is likely to want a console with all the things they do handily
grouped together.

• Consider what is a task in itself and what is a sub-task. These definitions are not
the easiest of things to decide, but with a bit of inspiration you can clarify tasks
into stages that must follow each other, or cover a different aspect of the whole.
Tip: Tasks have goals. Write these down in simple terms the user could
understand. (Use Beginner if you like as a framework for getting started.)

Wizards, tabsheets and dialogs
For a lot of the time when getting input from the user you're trying to keep them
focussed on a single item in a single sub-task. There are three GUI structures that can
help you do this.
• Dialog boxes

Pop-up, do the sub-task then close to return to the calling point. File open, file save
are ubiquitous examples. These come in handy in three situations:
- where the sub-task is likely to be repeated throughout the application

If you want to mix what and how you can
put sidebars, boxes or call-outs in with
your main text. This works both ways:
"- Advanced Primp-clogging features"
or
"- How to set up a new account"

Programming Version 0.4 Page 159 of 356

178 It is traditional, but not at all necessary, to have cartoon graphics with wizards.

179 Necessary because having to use a mouse slows down keyboard input. Difficult because
you need reliable 'next' without compromising 'have you checked' and getting tangled with
'Bzzzt-wrong' validation alerts.

180 Once you can process one 'document' having more than one is very simple and requires
hardly any code - provided you didn't build the 'document' into the application but kept it
as a distinct object.

181 By the way 'windows' were invented long before Microsoft nicked the term.

- where complex input is required for a relatively simple result
- where there might need to be a check before proceeding; either by the user

"are you sure" or by the system "is this a valid ID"
Always (for values of always) fully validate a dialog before closing it.

• Wizards
A series of dialog boxes chained together to step through a process. Installation
programs tend to use this method, collecting information and settings in a number
of steps. Programming wizards looks easy but you need to be very careful about
the order of dialogs, maintaining, validating and destroying state as the user moves
forwards - and particularly back.178 A tricky UI feature to get right for intensively
used wizards is avoiding the need to use the mouse.179

• Tabsheets
A random access stack of labelled dialogs. Typically used for settings where there
are lots of defaults and therefore it is not necessary to visit and validate them all. A
user will pick just the sheets they want, complete the dialog and return to the main
application.

One task at a time and/or multiple documents
You are probably familiar with a word processor which allows you to have more than
one document open on the screen but still forces you through a single print dialog to
focus your attention on a sub-task. That seems like a great idea, it works well and we
should have more.180 Ummm but what about accounts for more than one customer or
medical histories of more than one patient? Perhaps it's better if here the rule is 'one-at-
a-time' to avoid mistakes.

When we're looking at those patient
histories would it be handy to have the
whole picture in summary form, details
of individual episodes, a place where
we can write our own notes, a form to
fill in if we're forwarding the patient for
further attention and so on all on
display, all ready to be worked on
at the same time? Yes of course -
Having all the parts of a single case ready is one of the really marvellous things about
using a well designed GUI. The typical implementation is to select a case then provide
subsidiary windows181 with supplementary information or task sheets. For example a
doctor might have a patient history listing, details of recent blood tests, specialist's

Clerks tend to work with single documents
at a time. Professionals tend to collate
and use a variety of ready-use tools
together. (Sometimes you need to use
brute force to make professionals use
proper clerical protocols, in which case
switch to a wizard for that task.)

Programming Version 0.4 Page 160 of 356

reports and 'what happens next' windows all floating on the screen together.

Programming Version 0.4 Page 161 of 356

Untangling these displays and tasks in your mind
The first thing to remember is that behind the UI are tasks that need to be done and
objects that will be worked on. A customer record should be as independent from a
'customer details screen' as possible.

Secondly look at where fixed
procedures can be implemented. Quite
typically there will be a context which
will need setting up beforehand and
external information that the user will
need. A 'Dear Sir, thank you for
submitting your manuscript for our
consideration. I regret it is [insert
reason from list]' standard letter needs
name, address and reason. The first
two come from one source the third from another. We can't start the rejection letter
until we've got those bits of data and once started we don't need to divert until we've
done filing, printing and posting.

Thirdly what are the paths between tasks. Many database/clerical applications seem
to fall into the (login,) pick task from menu, select item to work on, work on record then
return. This is a straightforward tree structure and might extend through more than
one level as for example the customer details record offers an order history list to get to
an order detail record which offers a list of order items and so to an order item detail.
You'll probably find that this needs some modification where a task is accessible
through multiple branches. A specific order might branch from a list of orders or a
particular customer. Usually navigation between tasks is the easy part, it's the context
you need to make sure you've collected on the way there.

Fourthly which sub-tasks should be dialogs, tabsheets or wizards. Do you need to
partition tasks into logical sections. What context, if any, do they need?

Now you can look at what's left and combine an imaginative approach to the whole
task with attention to the very smallest details. If that sounds like top-down and
bottom up you'd be right. Your systems analysis should have told you what really
matters so now you can craft - it's an art - a UI that's a pleasure to use.

@@@ diary as a GUI
TD
BU

Printing
Forms design and clear correspondence is a serious art. Some information on the
printed page is more important than others. The same information sent to different
people may need different layout or editing.

Are fixed procedures really fixed and
should they be?
• Closer inspection might show that a

"we always do this" turns out to be for
values of "always".

• It may be a good idea to impose a
fixed procedure. More about this in a
later chapter.@@@???

Programming Version 0.4 Page 162 of 356

182 Please don't allow wooly language to obscure the message. Professionals need the facts
up front, clerks need the data clearly and conveniently laid out. If writing to 'the public'
state your business or the state of play in the first sentence. "Your clinic appointment is at
Foo hospital, on 2pm Wednesday 3rd July 2006". Further explanations and instructions are
required even if the sender knows all the information.

183 If label printing is part of your system then it can easily be a cause of annoyance.
Somebody forgets to reorder the rolls to print on, the label printer breaks and the new
model obtained at short notice isn't quite the same. Basically have a minimum of two
identical label printers and spare label stock in a sealed bag with reordering instructions.

• All remote communications,
particularly those sent to
organisations which channel
and prioritise
correspondence, the subject
and importance must be
instantly clear.

• The effectiveness of
communication is only ever
measured in terms of
receipt182

• Try to standardise layouts of
similar forms. For example
you might always put the address in the bottom left corner for ease of folding into a
window envelope.

• Always put a reference number (and version number) on forms and couple them
with a clerical protocol. (More on this in a later chapter.@@@???)

• Consider machine-readable elements such as a barcode on a 'renew your
subscription' form. Make sure there is a human-readable version as well in case
mechanical means fail.183

• Try to put numbers on pages and clearly indicate when there is something printed
on the other side of the paper. You'd be amazed how many people ring up to
complain saying "you haven't sent me..." only to be told "it's printed on the back".

Review
Programming is about giving users reliable and easy-to-use tools. You can code the
whizziest, coolest, fastest, code but unless you make it useable you might as well have
stayed in bed. In a later chapter we'll return to the design and implementation of
procedures.@@@???

It is now up to you, using YCPL to experiment with GUI controls. It's easy to get started
but will take time to become fluent. Many languages have limitations, quirks, version
differences and dialects. You'll just have to study the detail... ...not forgetting to
decouple the UI from the action. I suggest you implement the diary design we've just
discussed.

True story : I tried to find out how to get to five
local eye hospitals as if I was a patient. None
enclosed a map, only two even had maps - one
said "it's signposted". This is where your
programmer's skills kick-in. Before you know it
you'll be ruffling the feathers of administrators
who are under the illusion they're half-
competent. That's why you need to be a good
programmer with good communications skills
and able to define the objectives that nobody
else has ever really bothered to look at.

Programming Version 0.4 Page 163 of 356

184 But see Bug Free Program in glossary.

185 But often they stubbornly refuse to tell you so you don't get a chance to fix really crippling
faults. I am a user of some very useful but slightly buggy software, every couple of
releases I try upgrading but have to go back to version 1 because there are outrageous
extra bugs added in later releases which make the software completely unuseable.
Somebody who was new wouldn't have a hope. So have I raised a bug report? No. Life's
too short.

12. Good code
At this stage you could probably have a go at writing a web page using a database.
Many people get a book like "programming web pages for idiots" and off they go happy
with some result. As you now realise there's a bit more to it than that. If you have a
cherished idea that you'd like to start work on, then by all means start sketching and
trying out a few things...
... but read the rest of the book while you're doing it. The exercises are worth following
as they are self-contained practice sessions where you can trip over your shoelaces,
knock you head against intractable bugs, and generally make a mess without being
caught out embarrassingly.

This chapter will introduce you to some technical subjects in enough detail to
appreciate their value and work out where they fit in the grand scheme of things. Some
of these subjects are huge so we can't explore all avenues and wrinkles here. You'll
have to follow up with your own research according to what aspects are important to
you.

Anatomy of melancholy
For sake of clarity, and to give you a sense of proportion when "the damn thing won't
work" is driving you to utter frustration, let's define a couple of terms.

Bug Silly problem with code - it doesn't work you intended
Fault Major problem with program - it doesn't work as the user hoped

For example your program might work perfectly in all respects184 except that there is no
separate invoice and delivery address for orders - That's a fault.

A fault might be a bug and a bug is normally a fault but apart from this connection
they're different animals. Bugs are caused by sloppy coding, typing mistakes, late
nights and obscure things you can be forgiven for overlooking. (Apart from those
caused by bugs) faults are caused by poor design and lack of knowledge about the right
way to go about a job. The programmer is supposed to find all the bugs. You can leave
the users to find the faults185.

Delay and expense
Delay and expense will forever be your companions on the programming road. It's your
choice: Do you let them hitch a ride with you (joined by their family of rage, despair,
confusion, confrontation and disappointment) or do you wave to them as you go past.

Programming Version 0.4 Page 164 of 356

186 Sometimes for quick and dirty jobs of 20 minutes or so you can sometimes get away with
top-downing in code. Other times you can crib from a template or cut and paste, filling in
a few details from your head.

187 You'll have to keep reading to find out what this mysterious magic is - It's too powerful for
novices.@@@???

By now I expect you are eyeing up possible projects to make a start on. What better
time than now to make a start? Arghhh! Stop! Don't set out into the unknown with no
experience, no guide and no map. WCPGW? You get half way then give up. This
warning isn't just directed at novices, the last statistics I saw showed about half of all
real-time¤ projects were abandoned before completion. Obviously a lot of WCPGW
going on there.

The sorry fact is that this grief is completely avoidable, and yet it still goes on. A
combination of underestimates, poor research, flaky and unreliable skills, unsuitable
design, specifications without sufficient detail or appropriateness, enthusiasm before
experience, changing requirements and 'circumstances beyond our control' continue
trip up the smallest and largest project. It's a horrifying waste of money and effort.

As programmers often work alone or in small teams you need to have a realistic
approach to project management and look after your own resource and delivery
commitments. (There 100's of books on the subject, delving into some will give you
some buzz-words, ideas and introduce some tools, but the best education I can
recommend for anyone is to find a good manager and study their technique - It's a
rewarding and enlightening experience to see good management in action after the
usual bumbling.) You will get caught out time after time when things take twice as
long as expected - OK so you have to adjust your initial estimates and stick to them.

Design before code
Perhaps the easiest way to make a mess of a project is start on the walls before the
foundations. In programming of course we mean "Get the design right before starting
programming" (And before the design comes the research.) We have done a fair bit on
design already: Remember how long that took? We won't go over top-down, bottom-up
again although we will refer to it so you may want to do two things:
1 Review the design section in chapter @@@
2 Decide now that you'll never start coding without a design.186 (Sketched on paper or

typed - it doesn't matter.) This document will play a very important part later so
make sure your filing system is up to scratch.187

Threads
Question: How does your computer play music, connect to the Internet and operate as a
word processor all at the same time? Answer: By giving each application a little bit of
attention in turn. By switching between tasks quickly enough it gives the impression of
doing them all at once.

Each independent task is called a
thread. Like a chess grand master
playing a number of games of chess

Threads -v- Processes
A process is a program recognised by the
operating system and will be given its own
priority, 'territory' and ability to own
resources. A thread as we'll use the term
lives within a program just as other objects
and functions do.

Programming Version 0.4 Page 165 of 356

188 It's very cold at the North Pole and even colder in the grotto.

189 An utterly non-technical and not very accurate illustration - If you've never considered
threads before you need a gentle introduction, in truth they're a bit wriggly in the details.

simultaneously, the processor deals with each task in isolation. As we'll see, threads
can communicate and share resources and also 'sleep' if nothing much is happening in
its neck of the woods just at this moment or 'die' if it has finished its assigned task.
Some threads can be given higher priority than others.

Threads are hugely important. Even if YCPL doesn't support multi-threading (and many
don't or with difficulty) you need to follow the story so you can make informed choices
in future.

Santa is in his grotto with his faithful elf, collecting toys to pack into the back of his
sleigh. Santa's thread is about reading down a list, telling Elfred what to get,
waiting, taking it off Elfred when he returns from the stores, checking it matches
the requested item and putting it on the sleigh. Elfred's thread consists of
accepting an order for a toy, trudging through the stores188 picking a toy from the
shelves, trudging back to Santa and handing it over then waiting until Santa has
finished checking and packing and gives him the next item in the list.

Santa is in rather a hurry and wonders how he could improve on this method.
• By eliminating all the waiting
• By having more elves

For example to avoid the elf having to wait while he checks and packs the toy,
Santa could give the elf the next item off the list immediately then the elf goes to
the stores while Santa checks and packs. In a perfect world the time taken to
check and pack would be the same time as it takes to fetch a toy from the stores
and both would be fully occupied.

This gives a flavour189 of the nature of the interaction between processes. Each has it's
own routine but there are points at which they need to synchronise and objects that
need to be shared safely. If there were two elves who simultaneously read 'the next
item' off the list of toys, some good little boy or girl would get two identical presents.

A thread is a bit of code which is recognised by the processor (usually via the operating
system) as an object to be treated to its own slice of processing time and having some
privately owned memory. A whole program might be a single thread where the
operating system automatically allocates a new thread to a program when it is started.
More interestingly from the programming point of view a program may comprise many
cooperating threads some as small as a dozen lines of code.

Programming Version 0.4 Page 166 of 356

190 Here is an example of where it is really handy to give everyday names to things. We could
keep referring to the 'main listener thread', but especially where we're trying to imagine
individual entities going about their business a bit of anthropomorphism (or elfmorphism)
works a treat.

Santa the web server190

A web server has two types of processes.
• Listen for page requests (Santa - only one)
• Try to fetch and send the matching web page (elfs - as many as required)

Pseudo code for Santa(1)
Create a list to keep track of elfs
Open up for business
Loop{

If(anybody trying to connect){
Create a new elf using connection details to initialise
Add new elf to the list of elfs
Set the elf to run on it's own way

}
weed any finished elfs from the list by destroying them

}

Pseudo code for elf(1)
constructor{

Reserve any private resources
Store the client's connection details

}
run method{

interpret the client's page request
ask the operating system for file details
if (file is available etc){ // if not then report error code

open file
while (more bytes to read from file){

write a buffer-load of bytes to the connection
}
close the file

}
close the connection

}

Supposing we didn't have the elf threads and it takes five seconds to send a web page
(due to delays in the file system and communications link) and there are more requests
coming at the rate of one per second, then those requests have to join a queue or get

At this point coding gets tricky because implementation details vary a great deal
between languages. In some languages threads are possible but very hard work. In
the first instance just try to follow the concepts described below without trying to
code them.

As already mentioned you need to know about threads even if your sort of
programming appears to get by quite happily without them.

Programming Version 0.4 Page 167 of 356

191 Which can vary between different operating systems running identical code.

lost. With threads there are two advantages:
• Santa is always ready to acknowledge requests because his loop can be executed

very quickly.
• The time the elves can't do anything because they're waiting for the operating

system or communications can be usefully used by Santa and the other elves.

If Santa is running round his loop when do the elves get a chance to have their share of
the processing time? Any normal program that we've seen so far will never get to run
an elf because Santa keeps looping. The answer is that there has to be some form of
scheduler which either decides how to allocate time or a crude arrangement where
Santa 'goes to sleep' for a while to give others a chance.
• Give-way or let-others-have-a-chance.

This is often provided in modern languages. For example your code might be
calculating pi to umpteen digits in a lengthy loop, but very politely 'writes' to the
GUI to report progress... ...but no progress messages appear on the screen This is
because behind the scenes the method calls to the GUI are being denied any time
to do their display stuff because your computation is hogging all the processing
time. The way round this is to do some calculation then give other threads (the
GUI methods will be another thread even if you can't see it) a chance. When the
progress message has been sent to the screen your code gets the baton back for
another lap. And so on. Details will depend on YCPL.

• Sleep
A thread may be waiting for something to happen. If it hasn't and can safely pause
for trying again it may 'sleep' for a certain period, in which case it isn't a contender
for processing time until however many milliseconds or seconds have elapsed. For
example a thread that checks a connection is still alive might only wake up every
five seconds.

• Proper thread scheduling
YCPL may have a handy scheduling scheme built-in or you may need to use the
features of the operating system. There are various ways in which thread
scheduling is done191 and you'll hear complaints about them all. At this stage any
threading is better than none at all so don't worry.

A typical method is to ignore lower priority threads and share time amongst the
highest priority threads until they finish or block. A blocked thread is one that has
temporarily given up because it is waiting for some resource to become available or
there are higher priority threads which are stealing all the CPU cycles.

How does Santa's loop finish? And what happens if there are elfs still active? The
obvious way is to give Santa a Stop() method which when called will initiate a
closedown. Take no more connections, clear up any remaining elfs then terminate. It
seems rather rude to interrupt any elfs finishing off tasks so perhaps we wait until all elf
threads have finished and been weeded from the list. (Now you see why we keep a list.
In theory there is no need oi the elfs are completely free agents.)

Programming Version 0.4 Page 168 of 356

Santa pseudocode(2)
Constructor() - extends Thread{

Create a list to keep track of elfs
Set terminateFlag = false

}

method : Run(){
Open up for business
Loop(until terminateFlag is true){

If(anybody trying to connect){
Create a new elf using connection details to initialise
Add new elf to the list of elfs
Set the elf to run on it's own way

}
sleep // *discuss*
weed any finished elfs from the list by destroying them

}
Stop accepting new requests
Loop(until elf list is empty){

sleep // *discuss*
weed any finished elfs from the list by destroying them

}
 }

method : Stop(){
Set terminateFlag = True

}

This looks more like something we can turn into real code. The business happens in
the Run() method as before but with the addition of a closedown section which
gracefully waits for any active elfs to finish their work.
• Notice that after we've called Stop() the thread is still active for some time. We

can't rely on having called Stop(), or looking at the terminateFlag to indicate the
thread has finished. In fact the thread officially finished when the Run method
terminates.

• Whether there should be an explicit give-way call (sleep()) depends on the
scheduling method in use. In principle we have to give way otherwise no elf would
ever get to work, but the programming environment may deal with this necessity
for us - at least if we're careful. Getting the compromises and rules right so that
threads cooperate well in all circumstances is one of the fascinating challenges of
the subject.

• WCPGW with the closedown? It depends on all the elfs finishing. Suppose for
some reason an elf was stuck then we'd never get to terminate as the list of active
elfs would never be empty. In this case the answer is simple: Santa doesn't need to
wait for the elfs to finish there is no dependency. So Santa can die and leave free-
range elf threads running wild.... ...But some process has to own these threads and
be able to terminate them if necessary.

These issues are dealt with in various ways by various languages and operating
systems. Don't expect to master threads overnight.

More reasons why threading is in the advanced syllabus
Sharing resources and methods is part of the game. One thread might be adding data

Programming Version 0.4 Page 169 of 356

to a buffer and another reading it. If the data is static there is no issue but if there's a
stream of bytes being added and reading involves taking what's in the buffer out there's
a whole lot of trouble in store. Here's what can go wrong.

Thread 1 : Add "ABC" to buffer
Thread 2 : Read three characters "ABC" from buffer
Thread 2 : Delete three characters from buffer
Thread 1 : Add "DEF" to buffer
Thread 2 : Read three characters "DEF" from buffer
Thread 1 : Add "GHI" to buffer
Thread 2 : Delete three characters from buffer
Thread 2 : (No more to read)
Thread 1 : Add "JKL" to buffer
Thread 2 : Read three characters "JKL" from buffer

Although thread 1 sends ABCDEFGHIJKL thread 2 only receives ABCDEFJKL. (There are
other failure modes as well.)

The solution is to allow methods to lock-out all other threads for a period. In this
example Thread 2's ReadBuffer method demands exclusive access to the buffer
throughout both it's operations (ie. read and delete)

method ReadBuffer(){
 Wait for exclusive access to buffer
 Read any characters
 Delete any characters
 Release lock-out on buffer
}

Because data is often accessed through methods you might want to get an exclusive
right to use an object's method in the same way.

What about the following? As copying things might take a long time we think it's a
good idea to make it threaded so that other foreground processes can get a look in.
Here is the pseudocode. WCPGW?

constructor : Copier(FirstThing,SecondThing) - extends Thread{
 first=FirstThing // store local ready
 second=SecondThing // to be used in Run()
}
method : Run { // the threaded bit
 Wait for exclusive lock for first
 Sleep(100 milliseconds) // (contrived)
 Wait for exclusive lock for second
 Do some copying from first to second
 Release lock on second
 Release lock on first
}

Let's see what happens if we try the following:
c1 = new Copier(foo,bar)
c2 = new Copier(bar,foo)
c1.Run();
c2.Run();

c1 : Get lock for foo. Sleep.
c2 : Get lock for bar. Sleep.
c1 : Wake up. Try to get lock on bar...not yet available...wait
c2 : Wake up. Try to get lock on foo...not yet available...wait
c1 : Try to get lock on bar...not yet available...wait
c2 : Try to get lock on foo...not yet available...wait
c1 : Try to get lock on bar...not yet available...wait
c2 : Try to get lock on foo...not yet available...wait

Programming Version 0.4 Page 170 of 356

And so on for ever. This is called a deadlock.

Review
Programming with threads is like riding a steeplechase. Exhilarating but not for the
faint-hearted. If you're writing programs where more than one activity has to wait for
something then you should look at how you can avoid the delay to one task holding up
all the rest. These sorts of delays are endemic to communications. For example
suppose you are writing a web crawler, (a bot that follows web page links by
downloading them then following those links and so on.) Do you put all your requests
in a single queue and wait for each one to be satisfied before asking for the next one?
No of course not, you send out lots of requests 'simultaneously' and process the results
however they arrive, sending more requests in the meantime.

Algorithms
An algorithm is a method in the sense of a method of getting to a goal given certain
starting conditions. The interesting thing is that they can be studied formally to prove
under what conditions they will, 100% without fail, get a correct answer, to give an
estimate of the average and worst 'cost' (typically of time or storage), and to give
guidance for programmers on how to check that their code matches the specified
method exactly.

The reason algorithms are important is that there can be an enormous 'cost' difference,
easily 1000 times, between an efficient method and the one you first thought of. Just
suppose the phone book wasn't sorted into alphabetical order. That's exactly the
situation you are faced with when trying to access a database. Do you physically sort
the records, do you extract a bit and physically sort them, do you make an index with
each item pointing to the next one in the sort order, do you make an index by putting all
the A's together then within that the AAs and within that the AAAs and so on? How
would you sort your records or index anyway?

Luckily you can find solutions to pretty much every problem off the shelf. There are
typically a number of methods to chose from. Some are simple to code but take a long
time to execute. Some are tailored for specific data representations. Some work well
'most of the time' but might occasionally fail or take a long time.

Your first job is to research the possible
options and select one. Some of the
presentation might be rather daunting,
don't worry you're after the method
clearly explained, or better already
coded. Nowadays the Internet makes
this easy and you're very unlikely not to
find some ready to use code. Do not be afraid to look at alternatives.

Whether you find code or have to interpret the method yourself there is something vital
you must do: Have some idea of how the method works. In researching the 'how it
works' you should come across the limitations and alternatives. If you find multiple
implementations of the same algorithm compare the details - it's often quite surprising

Good news : The wheel has already been
invented.

Bad news : A lot of published code
contains bugs or non-obvious limitations.

Programming Version 0.4 Page 171 of 356

what a difference there can be between two bits of code that are billed as doing the
same thing.

Let's look at an example:
Given a list of numbers, what is their range. i.e. the difference between largest and
smallest. (Assume numbers are in an array.)

This might not strike you as the most difficult coding job so before continuing with this
book have a go in YCPL.

Here is one implementation in pseudo code:
Find smallest number
Find largest number
Result is largest - smallest

Here is another
Run through list

Looking for smallest
Looking for largest

Result is largest - smallest
And another

Sort list
Result is last number - first number

The first is a simple top-down approach with the advantage that The Find routines are
likely to be 'the same'. This might make it easy to code. The second recognises that
we can probably find the largest and smallest in a single pass of the array. This should
make it faster. The third is easy to understand, possibly extremely reliable if we have a
ready-use sort routine, but the sorting involved might mean a great deal more
processing. ('Might' because the list could possibly be sorted already for some other
purpose.)

Heuristic algorithms
The classical algorithm can be shown to deliver a specified result within certain
resource parameters such as run-time. A heuristic algorithm is usually a cheap-n-
cheerful or guessing method which generally works but can't be proved.

There is another method we could use for finding the range:
Take a sample of values
Calculate mean and standard deviation
Use the sampled values to compute whole population statistics

This is a perfectly respectable way to measure data parameters and might be a lot
'cheaper' than looking at ten million data items.

Research
Now and again you should make some time to explore other people's solutions in as
wide a field as possible to see what sort of problems have been 'solved'. There's no
requirement to learn the details or make an extensive catalogue, just to get a feel for the
many aspects of theoretical and applied computing where lots of work has been done.
This should give you confidence and a starting point when presented with a real
problem. Solve a maze, rotate a graphic, optimise cutting shapes from a sheet of
material, locating pallets in a warehouse and so on.

A Real Programmer will (a) assume others have attempted the same problem previously

Programming Version 0.4 Page 172 of 356

192 BISE (Before Internet Search Engines) you'd have to rely on specialist books or learned
journals. Just because knowledge is 'available on demand' doesn't mean you should wait
until you need it to make an exploration - How will you know it's there?

193 You may guffaw now but I'll have the last laugh when you're staring at code that won't
work at one in the morning.

and (b) have a few ideas where to look.192 NB Remember times change and techniques
evolve - What was infeasible 20 years ago might be crackable in an hour on a PC.

Putting an algorithm into code

Let's try coding the second method above:
largest = 0;
smallest = 0;
for(i=1; i<arraySize-1; i++){
 if(array[i]>largest){largest=array[i]}
 if(array[i]<smallest){largest=array[i]}
}
result = Largest - smallest

WCPGW? There's roughly one error on each line.193

• Which is the largest of -4,-5,-6 and ... err... 0? We need a better initial value for
largest.

• Which is the smallest of 10,11,12 and ... err 0? We need a better initial value for
smallest.

Cue initialising smallest and largest to the largest positive and negative numbers that
the type will accept. Many languages provide you with handy constants or functions
for this. Obviously if you know you're dealing with people's ages or shoe size you can
stick in 0 and 9999.
• The array index i starts at 1. How do we know this is the right place to start?

Possibly this should be 0?
• Is the loop finish condition correct?
• If there's no off-by-one error in the loop finish condition is the array full of data?
If you assume there's at least one error
in every loop you won't go far wrong.
(Don't forget the ==/= gotcha for
starters.) Debugging the first time
round a loop is fairly easy (but
unnecessary if you get it right before
testing), checking the loop exits at the
right time is a lot more difficult. Moral : Double check start and end conditions. Here's
another gotcha: You process the elements in a dynamic list deleting them after working
on each one... and increment your index!
• There's a copy-paste error in the next two lines

What follows is what a lot of people think of as programming. Although it's only a
part : Pay attention. Take note. This is sorting-men-from-the-boys stuff. It could
take years before you get your long trousers.

Don't be afraid to work from the end of a
list or array to the beginning and count
down your index. This makes it easier to
check the terminating condition both by
looking at the code and at debug time.

Programming Version 0.4 Page 173 of 356

194 There is no one-right-way of naming. Some people always put an action word such as
Get, Set, Do, Select, Wait etc at the front of functions. This can be useful when you need to
be clear whether you're referring to GetLatestInfo() or LatestInfo. (GetLatestInfo() might
do the necessary refreshing of the LatestInfo variable so mistakenly referring to LatestInfo
is equivalent to GetOutOfDateInfo()!)

195 Subtracting the smallest possible number from the largest possible number gives a
number which is larger than the largest possible number. You've tried herding cats.
You've tried nailing jelly to a wall. You've tried keeping that unfortunate episode with the
Boy Scouts quiet. Now try bug-free coding.

• If the language is case sensitive then capital-L Largest is an error.
Don't forget stupid typing and transcription mistakes. You will make dozens each day
of which most will be spotted immediately... And the rest will lurk. One of the reasons
for developing naming conventions is that you automatically put capitals in their 'right'
places.194

Next try:
// find difference between max and min
// array elements in range hi to lo inclusive
largest = MaxPossValueForType
smallest = MinPossValueForType
for(i=lo;i<= hi;i++){
 if(array[i]>largest){largest=array[i]}
 if(array[i]<smallest){smallest=array[i]}
}
result = largest - smallest

WCPGW?
• The initialisation of largest and smallest is back to front
• What are the valid values for hi and lo. Should we check?
• If there are no items in the array we need to have a return 0 rather than a return

difference between MaxPossValueForType and MinPossValueForType.
• Can you spot the error in the last line if lo>hi?195

Next try:
function FindRange(AnArray:array of int, Lo:int,Hi:int) returns int {
 // tell what variables we will be using
 var smallest : int
 var largest : int
 var i : int
 // validate indexes
 if(Lo<GetLowestPossibleIndex(AnArray)){return 0}
 if(Hi>GetHighestPossibleIndex(AnArray)){return 0}
 if(Lo>Hi){return 0}
 // initialise min and max
 largest = AnArray[Lo]
 smallest = AnArray[Lo]
 for(i=Hi,i>Lo,i--){
 if(AnArray[i]>largest){largest=AnArray[i]}
 if(AnArray[i]<smallest){smallest=AnArray[i]}
 }
 return largest - smallest
}

Programming Version 0.4 Page 174 of 356

196 Actually two and a little bit because the conditions are only occasionally true.

This looks a bit more professional.
• We have defined the inputs and output a bit more tightly
• We have told the compiler the names of the variables we'll be using. This should

let it trap us trying to use typos and also if we were using incompatible types.
• Validation should work provided return takes immediate effect. In some

languages you'd be setting a return value so the subsequent lines would continue
to be executed. (Some people, including me, like to limit the number of exits from a
function to one normally, but here it's very clear what's happening.)

• Should the third validation be if(Lo>=Hi)? Yes.
• Most languages have some functions for implementing GetHighestPossibleIndex()

but remember that for zero-based arrays the highest index is the size less one.
• Why mess about with artificial values to initialise when we can use real values?
• Does the loop look easier to verify visually? I think so. (There's even a safety

margin if we put >= in the condition instead of >.)

Additional points to note about this routine.
• You will want to add some comments to be used for usage documentation.
• Consider allowing out of range Lo and Hi arguments and constraining them to the

limits of the array rather than rejecting them. This can make the routine a lot
easier to use.

• Although not part of this routine, the purpose for calling the routine might be to
allocate 'bins' for collecting statistics. If the lowest value is 5 and the highest 15
the difference (as supplied by our function) is 10. But we need 11 bins. This is
called a fencepost error¤.

Review
How could there be so many problems with such a simple routine? Answers on a
postcard please...

This is completely normal. After WCPGW comes HCIPBSS - How could I possibly so
stupid!

You can probably get an inkling of why it's such a good idea to break programs up into
small units and make sure each unit is bugproof. Of course then you have the hassle of
sticking the bits together the right way, but you can document that in a few lines per
function.

Optimising
What if, in our example, we were looking at say the number of images on lots of web
pages? Instead of an array to give a value we might have a function that looks at a web
page and counts the number of tags. Here is what the loop code would look like.

if(GetImageCount(i)>largest){largest=GetImageCount(i)}
if(GetImageCount(i)<smallest){smallest=GetImageCount(i)}

That looks like a possible four calls196 to the same 'expensive' function. We can reduce
that to one very simply:

var imageCount = GetImageCount(i)

Programming Version 0.4 Page 175 of 356

197 Because in practice there will only be a handful of cases where first condition applies even
with hundreds of data items.

198 I know this is a thought experiment but doesn't 1/20,000th stack space ring any alarm
bells? Err.. That's stacks of cards 30 foot high! Don't forget your reality checks - they
should be part of your Real Programmer's psyche.

if(imageCount>largest){largest=imageCount}
if(imageCount<smallest){smallest=imageCount}

That's more than halved the number of calls to GetImageCount(), but we can go further.
The test might be 'expensive' in which case can we save unnecessary tests? Yes we
can. Because largest and smallest are initialised to the same value we can be
absolutely certain that if a value triggers the first test it can't possibly be the smallest as
well.

var imageCount = GetImageCount(i)
if(imageCount>largest){
 largest=imageCount
}else{
 if(imageCount<smallest){smallest=imageCount}
}

In this case we won't save much197 and there is more to go wrong and it's more difficult
for somebody else who comes along later to alter the code to understand what's going
on. So, on balance, even if we did as we ought to have done and put some comments in
the code it is probably not worth the worry.

Optimisation is not a substitute for having an efficient algorithm in the first place.

More about the cost of algorithms
Lets suppose it takes you 1 second to put a record card into one of 10 pigeonholes
marked 0 to 9. Assume there are no duplicates. To sort 10 will take 10 seconds. To sort
100 will take 100 seconds to sort on the tens digit to end up with 10 cards in each
pigeonhole. Now remove those and place in 10 stacks ready for sorting each stack of 10
which will take 10 seconds a time. Total time will be 100 + reorganising time + (10
times 10) = about 200 seconds. To sort 1000 will take 1000 seconds to sort on the 100's
digit then 10 lots of how long it took to sort 100. Also we'll need space for 10 more
stacks of 10 cards (as used in the sort-100 routine) and 10 for stacks of 100. If we
tabulate this (excluding time taken to empty pigeon holes) we get the following.

Number to sort Time Stack
space

Time per
card

Stack space
per card

10 10 0 1 n/a

100 100+(10*10)=200 10 2 1/10

1000 1000+(10*200)=3000 20 3 1/50

10,000 10K+(10*3K)=40K 30 4 1/333

100,000 100K+(10*40K)=500K 40 5 1/2500

1 million 1000K+(10*500K)=6M 50 6 1/20000198

Programming Version 0.4 Page 176 of 356

199 For example all the distances between N places.

The time taken to sort each card using
this method keeps increasing. You will
see it's the same number of seconds as
number of digits in the number of cards
- bingo! - A logarithmic relationship.
That is the time per card is proportional
to log(N) (N being of course the number of items being processed.) The consequences
of this are that sorting large numbers of record cards will be disgustingly slow. Not only
are there more to sort but each one takes longer so there's a multiplying effect. So the
total time to sort N items is N times log(N).

Order of
Wherever you see that "N times" you're in polynomial country. For example the number
of ways to combine a set of N items199 is "Half N times (N-1)" or (N2 - N)/2.
When comparing algorithms we typically simplify
• We're interested in the relative cost so we forget the "/2"
• The N2 bit will vastly overshadow the N so we only look at the largest power
We then say this is order of N2 (Normally written as "O(N2)")

'Order of' is used to refer to the 'cost' of the complete operation. So our pigeonhole sort
is O(N logN) for time and O(log N) ish for stack space.

The reason for bothering with the cost-
per-card columns is in case we were
looking at real costs. If the space for a
stack costs £10 and an employee is
being paid £3.60 per hour we can soon
see that for 1000 or so cards the stack
cost dwarfs the wages bill but for one
million wages cost £6000 but the stacks
cost only £500.

Know your N
So you can see that unless we know
how many cards we'll be sorting we can't hope to optimise our operation. For example
if we had more pigeonholes and stacks we might get away with less time. Or vice
versa.

The sorting we've looked at
is typical of a quite good
sort being O(N logN) but
there are some that are
O(N2) which for moderate N

We're about to dip into the maths you
drowsed through on Friday afternoons. In
particular logarithms and polynomials.

You can easily research sorting algorithms as they've
been studied extensively and many variants
published. Don't re-invent the wheel.

Step costs. Compare the stacking space
required for 990 cards and 1010 cards.
Suddenly we need space for an extra ten
stacks. There are all manner of these
limits in real life. Some of them are the
difference between feasibility and
unacceptable costs. It's good policy to be
frugal all the time and very clever
occasionally.

Programming Version 0.4 Page 177 of 356

200 In the days of mini-computers I once found a crude O(N-squared) sort inside a friends
program that was being used to plan government defence spending. Before I replaced it
(say 30 minutes work) this what-if program was taking 2-3 hours for each run which
tended to spoil everyone's day. Afterwards about 5 minutes. As I wasn't getting paid I
didn't bother with a proper audit - I wonder if the results were worth the paper they were
printed on?

201 For values of never. If you need to this you're probably better off coding a separate
function to start with and only making the code in-line as a last resort when you can test
against the normal version.

202 This is a merge-sort.

203 So long as we don't drop the sorted cards on the floor - something that could happen quite
easily in days of punched cards. By the way: If you have a set of cards to be kept in order
take a jumbo felt pen and rule a slanting line across the side of the stack. Each card will
have a black mark in a slightly different place along its top edge. This means you can
instantly see any that are filed out of order. There is a similar trick if there is a flaky
collating process. Print a black rectangle right on the edge of each page and work your
way down by a rectangle's height for each new page

becomes enormous.200

The converse is true: Small Ns can use very crude sorts with small overhead. But - (Big
But) - never ever201 write a sort in-line. That is you've got a dozen records that need
sorting so in the middle of your code you start typing something like:

for(i=0,i<count,i++){
 // shuffle records
}

No No No! By all means
SortMyRecords(arrayOfRecords)

with a separate function. The reason for this ban is that there's a 10 to 1 chance you'll
introduce some bug or other which will be difficult to detect.

Adjust your overall approach
Suppose once in the dim and distant days the cards had been sorted. Now when we
have a few to add we can sort the few new ones then work our way through the piles
inserting the new ones as we go.202 This won't take very long.203 A typical computer
version of this is incoming emails and news items that need shuffling into place.

Beyond sorting
Sorting is a very good place to start looking at algorithms because the science and
trade-offs are all there. However there is a huge field of problem solving methods that
have been researched and the results published or packaged. Here are three typical
approaches that you may want to think about when looking at the solvability of your
private problems. (Obviously after researching how people might have done it already
many times over.)
• Breadth-first or depth-first

Suppose you are exploring a network. It could be a communications network, a
network of possible moves in a game of chess, a set of linked web pages or family
relationships. Let's use the last example. From your starting point, let's say that's
you and you're listing your ancestors, you can find your father, his father, his father

Programming Version 0.4 Page 178 of 356

204 Traversing trees is quite an important subject. There are plenty of algorithms. In your
branch of programming you may not come across this subject, but if you get an
opportunity to give it an afternoon's attention do so.

205 If you look this up on the web or computer science texts be prepared for a long slog. It's a
little gem the scientists make a big thing of because you can use it to prove with cast iron
logic that an algorithm will do what it says on the tin.

and so on until you run out of data. Now, starting from the furthest father look for
mothers, brothers and sisters and wives. If any found then look for their ancestors
and then their contemporaries. When all possibilities have been exhausted come
back one generation and repeat... eventually that's all of your father's side of the
family documented. Do the same with your mother's side, then finally your
brothers and sisters (who may have different parents to you.) This is known as the
depth-first approach.

Alternatively you could exhaustively list 'your generation' then for each member of
that generation investigate each parent and that parent's generation (ie uncles and
aunts on one side) but before looking at their parents look at the other parent's
siblings. Then repeat for all the parents of the first generation. This is a breadth-
first approach.

So which method to use? It depends. (When you follow the iterature)

• Divide and rule
Is it possible to break a N-sized problem into a two half-N-sized problems. If so you
can probably repeat the division until there's a simple way of handling a small
number of items. This is what we did with the pigeonhole sort.

• Repeat until done
Quite often this is the heart of algorithms. There are one or more states where
something is done and rules are applied to decide what the next state will be.
For example when looking at the family tree example above we had rules to
'add new person to list', 'If father found then new person is father else if mother
found then new person is mother...if no parents or siblings then go back to the
person who led us here and mark this branch visited' 204 (The bit the computer
scientists never fail to emphasise is 'until done'. Well they have a point!)

Loop invariant
Before each deal of a hand of cards you can always say that 'nobody knows where any
of the cards are in the pack (And all 52 are in the pack)'. As the hand progresses this
condition is no longer true, but after the play you collect and shuffle to restore the initial
condition. A condition that is true at the end/start of each repetition of the loop is
called the loop invariant.205 Each aeroplane flight has a loop invariant : "All wheels on
the ground." Anything can happen during the loop but the loop invariant must be true
before the start and after each cycle.

Computer scientists like to use this to prove algorithms work and you may find it helpful
to put in some comments to help whoever has to maintain and debug the code about

Programming Version 0.4 Page 179 of 356

what must be true so you can convince yourself that despite all the shenanigans going
on in the body of the loop, certain key aspects will hold true ready for the next iteration.
What aspects? Typically, and most usefully, one that describes the very condition
you're hoping to achieve as your final goal. Flying to Sydney? Regardless of the
number of times your plane lands to refuel, when you get to Sydney that 'all wheels
safely on the ground' is a really good loop invariant.

Assertions
Practical programmers are more pragmatic and use the idea that some things must be
true at a point in the program in a broader way. Suppose you have a number of web
pages linked together to perform some operations. When you're at say "Order menu"
what can you be certain of? Do you know the user ID and have you validated their login
and permission to play with orders? Is the database connected? These are bits of
miscellaneous state which may be modified somewhere else in the system so are tricky
to be absolutely certain that you've lined everything up just right before you start work
on this page.

An assertion is a statement that should always be true. Some programming languages
provide an assert() function which would normally not be compiled into the code but
can be activated in a debugging mode. Many programmers swear by assertions, others
seem to get along fine without them.

Assumptions
My personal approach (don't forget the
sort of programming I do may not be
the same as yours) is:
• To put in comments about the

assumptions being made
• To actively check important items

if there is more than zero
probability of unsuitable state.

• To check function arguments.
Ie not to use an assertion function, but to clarify what's expected and check. The more
your code is split into functions the more frequently you can check the values as they
get passed to functions. Clear documentation is essential.

You may see this sort of code
if(IsUserLoggedIn()==False){
 JumpToLoginPage() // can never happen
}

Which is a succinct way of dealing with a possible issue and highlighting for the benefit
of anyone reading the code that we are assuming the user is logged in.

Exceptions
You've probably seen enough rude exceptions thrown in your face already. Here's how
to make better use of error conditions and even create exceptions of your own.

When we need to deal with some situation we have two alternatives:
1 solve the problem locally

Assumptions generally relate to external
state which you're going to be relying on.
This is often a fact of life, but you can do a
little bit about it by putting as much code
as possible in functions that don't refer to
external variables.

Programming Version 0.4 Page 180 of 356

2 admit that at this point we're not qualified to fix the problem and refer the matter to
some higher authority.

An example of the first method was given in the previous section where we checked to
see if the user was logged-in. Another common method is to assign some default
values to results, so that if some part of a procedure fails we've got something better
than nothing to fall back on.

Sometimes what we want to alert is not a 'problem' but some situation which needs
handling and might arise somewhere in a block of code.

Be prepared to be interrupted{
 do everyday activities
}
by the phone { answer phone }
by the microwave going 'ping' { stop for lunch }
by something else {
 Pass interruption to boss to deal with - tell them what's cropped up
}

In this example we avoid 'answering the microwave' by having distinguishable types of
interruptions. The first two cases we handle ourselves, but the 'something else' needs
referring to the boss.

Now imagine you're the boss and a voice on the phone says: "Boss! Something's
interrupted me". How useful would that be? Not a lot. You might want to know which
of your employees was calling, more details of what 'something' was and what the
employee was working on at the time. You might tell people that you don't want to be
interrupted for minor matters - Which begs the question 'how is minor defined'?

Finally, when there's an interruption there might be some tidying up that must be done
before quitting. You wouldn't expect a tele-sales person to leave their station in mid-
call, so

finally {finish current call}

The reason for finally is that exceptions can disrupt the normal flow of logic so that
there may be no guarantee that appropriate finishing actions such as freeing resources
and closing files will be taken.

Exception handling is not available in
older languages. A traditional
approach with these is for functions to
return an out-of-band value. For
example when converting months from
names to numbers a function might return -1 if it can't make a proper interpretation.
The caller then looks for this and treats it specially.

Lets see these concepts in some (quick and dirty) Fudge code.
// Use a string in the form ddmmyy to create a day object
constructor Day(DateString : string){
 int d,m,y
 d=1; m=1; y=0

Beware of exceptions inside constructors.
You need to discover exactly what
happens with YCPL.

Programming Version 0.4 Page 181 of 356

 try // ... finally
 if(StringLength(DateString)<>6){
 raise InvalidDateStringExecption('Must be ddmmyy');
 }
 try{ /// ...catch
 d = StringToInt(SubString(DateString,0,2)); //[dd]mmyy
 m = StringToInt(SubString(DateString,2,2)); //dd[mm]yy
 y = StringToInt(SubString(DateString,4,2)); //ddmm[yy]
 }
 catch StringIsNotAnInt exception {
 raise InvalidDateStringExecption('dd,mm and yy must be ints');
 }
 if((d<1)or(d>31)or(m<1)or(m>12)or(y<0)or(y>99)){
 raise InvalidDateStringExecption('Invalid dd,mm or yy'');
 }
 // better date validation to go here
 }
 finally{
 this.day = d
 this.month = m
 this.year = y
 }
}

• Try...finally operates to ensure that some default values are set regardless of
any exceptions raised on the way.

• We do a straightforward test for string length and chose to raise (often called throw)
an exception. We have defined this exception object somewhere else so you can
think of raise as an instruction to construct the exception object and activate it.

• It is quite normal to add diagnostic information to exceptions.
• When we're converting the string into integer parts, the function we use to do it

might throw an exception. Documentation will tell you exactly what exception
types are thrown. Some languages insist that a function declares what exceptions
it will throw which enables the compiler to check that something is going to catch
them and that there won't be strange exceptions bubbling up through the nest of
calls which burst out unexpectedly because you've forgotten to handle them at an
appropriate place....

• ...So we catch any exceptions (If we didn't these would be propagated to the caller
and its caller etc until the user sees a crashed program with a not so useful
message like "Invalid number at 4545432:65454323 Program halt.") instead
turning them into our customised exception.

• We do some more logic testing in order to trap illegal values. (I'll leave you to
contemplate the poor quality of these lines of code.)

Here is how it might work in practice:
Pass "25 Dec" to Date constructor.

Construct parent object. Allocate space for three integer variables and assign values to them. Start a block of code
which will deal with exceptions.

Pass argument to string length function...result is 6. Test fails so don't execute block. Start a block of code
which will deal with exceptions.

Pass argument to string chopper function. Result is "25". Pass "25" to string to integer convertor
function. Result is 25. Pass argument to string chopper function. Result is " D". Pass " D" to string
to integer converter function. Exception of type StringIsNotAnInt 'returned'. Halt normal program
flow and jump to exception handling at end of block.

We have got a specific trap for StringIsNotAnInt so do the associated block of code. Create a new
exception object (specifically of type InvalidDateStringException) and give it a text message to carry. Halt
normal program flow and jump to exception handling at end of block.

Programming Version 0.4 Page 182 of 356

206 This is a very common error. Languages don't seem to have any consistency. Some that
have zero-based arrays have 1-based strings. Those with zero-based strings need special
care when searching for the first occurrence of one string inside another. How does it
differentiate between 'not found' and 'found at first position'?

207 I use an otherwise extremely useful program which occasionally crashes with an
"unexpected error" message. That's it! I wonder what the programmer was thinking
about when they wrote that?

Set the day field to d, the month field to m and the year field to y. Return from constructor.
Oh dear constructor has returned with an error.... (handle it....presumably by some message to the user)

Note that there could have been the possibility that the SubString function returning an
error. In theory we've guaranteed this can never happen because we've made sure with
the preceding test that the string always has exactly six characters. But what if we
made a programming error and have used a base index of 0 for the first character when
we should have used 1?206 There will be an exception like InvalidIndexException raised
by the SubString function. What happens then? In this case normal processing halts.
There is no matching trap for InvalidIndexException and so the exception propagates
up the call stack 'as-is'. The finally block will still be executed. In this case this is
probably the desired behaviour, but there are two alternative ways we could have coded
the trapping of these exceptions:
1 Have a general catch-all which will trap any sort of exception.
2 Explicitly trap each type of possible exception and handle each one accordingly
As a programmer you've got the choice so use it wisely. The second method can be
overkill - Why would you want to check for stupid programming errors you'll find on the
first debugging run and won't mean anything to the user anyway? But the first method
could be very confusing. Suppose we'd used the catch-all trap and came to testing our
program. That's very strange! When we type in "121212" for the date we get a dd,mm
and yy must be ints message. Half an hour later, after trying all sorts of ddmmyy
combinations and swearing at the StringToInteger function we eventually realise our
catch-all was masking the InvalidIndexException which we could have fixed in 20
seconds.207

Review
In Ye Olden Days we seemed to manage without exception handling but I wouldn't try
it now.

• Exceptions come in various pre-defined and (usually) programmer devised variants.
It is simplest to think of an exception as an object that will burst out of it's
enclosing box and will continue to burst out of enclosing boxes unless trapped.

• Exception handling is generally based on blocks of code. try is often keyword used
to indicate the start of such blocks.

• finally is useful to ensure that code which must be executed come what may,
such as releasing resources and closing files is processed. You'll frequently see
this:

open file
try

Programming Version 0.4 Page 183 of 356

 process file
finally
 close file

Which if you think about it is a really good idea because all sorts of things might
possibly go wrong during the processing. Otherwise the operating system thinks
the file is still in use even after our program has collapsed in a heap - so stopping
future access until a reboot.

• Catching exceptions needs to be done with care. There's often a balance between
catch-all and catch every possible exception. For the most part catch the ones you
expect and leave the others to propagate.

• Throwing or raising exceptions of your own making is a handy way of identifying
specific problems and being able to take appropriate action. Avoid masking
detailed exceptions with generic ones.

• Remember to give useful error messages to users in language they understand.

Programming Version 0.4 Page 184 of 356

208 This chapter is back to front - but it's easier to understand that way. At the end we'll be
looking at the concepts implemented more practically at the start. The denouement will
be "how do we know what to check".@@@check denouement

13. Testing and quality
The practice of testing often goes as follows: "It hardly ever crashes - That'll do".

The theory of testing is about saving down-the-line effort by finding faults while the
beast is still in the factory. Not just 'getting the code to work' but 'assurance that it does
the job every time'.

In this chapter we'll look at the theory of testing first as everyone claims to do it, then
consider practical issues then discuss what we mean by 'quality' and how the right
approach can shine a light on your programming strategy.208

Introduction
As well as logic you may need to test utility, appearance, usability, reality of
assumptions about inputs, speed and security. (There is a grey area where testing can
shade off into tuning.)

Testing takes time, is labour intensive and boring, is an art, and is often an obstacle to
signing-off the code as finished. These factors are not conducive to giving testing the
necessary attention.

• How do you know what to test? - Inspecting the machinery
• What are you looking for? - Does it do the job
These are two different aspects which can easily become confused. There's no reason
why they shouldn't be mixed together so long as you can distinguish between 'unit of
code' and 'purpose of application'

Syntax checking
Many development environments have
degrees of syntax checking built-in.
They might find unmatched braces or
just highlight key words. Normally
though you only find out about syntax
errors when you try to run the code. The consequences of this are that you need to get
your code to at least run or be compiled in some form as soon as possible. This means
either small stand-alone units or incremental coding for frequent code-compile-fix
syntax-try to compile again cycles. The alternative is you spend all week coding then
have to wade through all sorts of sections of code that you need to refamiliarise yourself
with for another week.

Visual inspection

I've seen some people who put typing
speed before accuracy. They don't make
good programmers.

Programming Version 0.4 Page 185 of 356

209 Don't be afraid to postpone work that will distract you from your main goal. Leave suitable
markers in the code and code with future development in mind so you can pick up the
threads later.

Put your WCPGW hat on and work slowly through the code looking for stupidities and
usual hot spots. One technique to focus the mind is to go through the code
commenting each loop with how it works. Documenting code just after writing it is a
bit of a change in pace (as good as a rest) which might make you think about what
you've just coded.

Bottom-up testing
Everybody does it. Test the components, assemble the components, test the assembly
and so on.

Extension testing...
Start with the most basic functionality then add features testing as you go. This
approach, particularly suited to OO programming, has two non-obvious advantages:
• You stay immersed in your code as it develops, looking at different aspects of the

same thing while having all the details fresh in your mind.
• You appreciate the strengths, weaknesses and possibilities of the unit. This means

you may re-think some aspects of your basic approach or may add a few handy
features while you're at it to make the unit more generally useful or robust.

Evolving a solution is not a substitute
for spending time on initial design, but
on the other hand you don't need to
stick to a plan if it looks like there is a
better option. One common 'evolution'
is where you realise that there is some
aspect which should be spun-off into
it's own unit which will be a valuable
component to reuse elsewhere.209

Defining tests
Way back in chapter @@@ when we were developing a diary we did a little bit of
testing. This amounted to throwing a variety of inputs at the program to see if any
would cause problems. The choice of test data was made by merging the sorts of
inputs expected with the sorts of exceptional inputs that typically cause trip-ups.
Remember that some of the tests are 'let's see what happens' and others were 'this
should go wrong'.

We had to interpret the specification and make up a context. This is typical. One other
aspect is that the writer of the code will know what logic tests and loops and data
structures are buried within the code and so can specify tests which look at the
boundary conditions and validate the validation routines. Pop back a couple of pages
to look at the string-to-date example.
• Abuse testing: "-1" is a valid integer and "12-1-2" could possibly be inputted as a

date by a user. Will our validation routine trap this? This is an example of a
possible 'illegal' input which could slip through our validation. Abuse comes in
three flavours :

After a while you will develop your own
style of code development. Rigid
compartmentalisation is unlikely to be a
successful strategy... ...neither is code
before design... or calling it finished when
it works at last. (More answers later.)

Programming Version 0.4 Page 186 of 356

210 Some people advocate writing tests like this with constants on the left and variables on
the right in the hope of triggering a 'cannot assign variable to constant' compiler error.

211 Or you may be experimenting in the hope that by understanding the behaviour of your
routine better you can improve it or avoid unpleasant effects.

212 And there is a Grey box as well - Not much of a box then is it. A classic case of the
simplistic metaphor substituting for real thought. The 'opposite' of Black box is either
Open box or Clear box. This is the sort of anomaly that a Real Programmer ought to be
spotting. NB You don't have to stop the slide show presenter in mid-spiel - you've been
alerted to their smoke and mirrors approach so can enjoy the exercise of looking for the
other rickety logic, glossed-over statements, opinions-as-facts and so on. Mind you, in the
discussion afterwards...

• Well meaning but misguided or careless
• Systematic mismatch of actual input to specification
• Hacking. (We'll look at this in a later chapter.)

• Logic testing: Suppose we tested the length of the string to be 6 digits as follows
(with the appropriate re-jigging of the following logic)
if(StringLength(DateString)=6){ ... Then we must definitely check for 5,6 and 7
character strings. Why? Because of the equals gotcha this might always evaluate
as true.210 (With the <> test we can be a bit more confident of this basic test
working without explicit testing.)

• Functional testing: When the routine doesn't fail... ...does it actually work? Our
string to date code has an odd way of handling years. 0 to 99 inclusive. Does 88
mean '0088', '1988' or '2088'? Can we represent 1066 or even 1966? Part of this is
presumably the responsibility of the designer but we still don't know for certain
that "010100" gives a valid date (whatever valid means). To do this we need to
exercise the routine in a wider context where we can validate the 'correct'
responses are always correct. You may be testing for other matters such as speed,
accuracy, reliability and resilience. 'What matters' will vary and ought to be
specified.211

Functional testing is sometimes called Black-box testing where the tester doesn't get to
see the internal mechanism. This denial is supposed to be good for the soul - or
something. White-box212 testing is where the tester has access to the innards, possibly
with no context.

Test harness and environment
To carry out functional testing (and the other types) you typically need some way to
exercise your code, feed it with interesting data and look at what goes on.

A test harness is a special program that simulates the environment of the unit being
tested. For this to work you need to provide ways for the harness to inject data and
'press the start button'. Suppose you're writing a web browser, then your environment
will consist of a web server with specific pages, and a program that simulates user
actions. Once you have the tools for the job you then need batteries of tests (one for
each area of functionality you want to test) and a way to tell if what happens is what
should happen. This can get very involved which is why you really want to make sure
the components work first and then you can concentrate more on the interaction of

Programming Version 0.4 Page 187 of 356

213 Well at any rate ensure nothing immediately obvious goes wrong. With any luck the 'oh
dear we never though of that side effect' will only become apparent after many months
when the trail back to you has gone cold.

those components.

A test environment is all the tools, data, analytical tools, specifications and result logs
used for testing. For example if you're maintaining some application that is currently in
use it is considered very infra-dig to test using live data. So you have a separate
database which you can experiment with. If you need real data then you can copy it to
another database (that makes three - 'live', 'copy of live' and 'specially for testing') to
make sure213 you're not going to trash vital data.

Tools for testing (with IDE goodness)
You already have an editor and compiler and some way of running your programs.
What more could you want to allow you to develop quality code quickly?
• A well organised filing system for a start

• With language reference documentation
• With application documentation (specification, design, user guide, test data,

development history and to-do list.)
• With general purpose sources and code library
• With application code (past and present)
You don't need a complex database - the ordinary file system should be sufficient.
If you are part of a team then special rules might apply.

• A more 'intelligent' code editor.
Funnily enough there are a lot of
people who prefer very simple
assistance with their code editing,
the odd bit of automatic indenting
and colour coding; while others
drool over editors that sense what
you're going to type and prompt for
the right number and type of
arguments as soon as you get to the opening bracket of a function name. Other
clever editor features are showing an overview of your code elements in a tree so
you can drill down to objects and methods or functions in units.

• A compiler which has various levels of warnings and possibly different modes of
compiling to include debugging code during development and cleaner code for
release.

• A compile/link/make build engine which knows how to construct an application
from components. Typically it knows how to do only the minimum amount of work
needed to ensure that modifications to code are applied wherever necessary.
Sometimes this will be built-in to an IDE (Integrated Development Environment),

Editors are very personal things. One
man's vi is another man's Emacs. (Two
contemporary editors of the 1980s) The
first you have to see to understand how
primitive it is, the second a Swiss army
chainsaw. Both had large bands of loyal
followers!

Programming Version 0.4 Page 188 of 356

214 Since we're concentrating on testing here, if you use make or can get a log of what's
changed in some other way you might be able to generate a list of items that could
usefully be re-tested.

215 How do you print null?

216 But research Eclipse which is a FOSS IDE intended for multiple languages.

other times you will use a utility called make¤ or one of its derivatives.214

• Debugger. If you run a Javascript program with a syntax error in it, all that
happens is the code stops executing at the error. That's all. No helpful hint to say
"Hey look at line 77". (Javascript is interpreted not compiled - so the first chance it
gets to hit a syntax error is at run time.)

Wouldn't it be really useful to step
through your code line by line and
see what's going on inside? That's
what a debugger does. You can
set places and conditions to pause,
examine the call stack, view variables, continue a bit further and so on.

• Tracing is logging to a file as required to trace the logic path and variable state.
For example suppose you are trying to track down why a routine doesn't give the
correct result. You might get key variables sent to a file at entry then at every
iteration of the loop in the hope that you could detect where the logic left the rails.
Quite often you will write your own trace functions to suit your environment. (We'll
do this as an exercise later.)

• Dumping is 'printing' an object to a file for analysis. Suppose you are having
trouble sorting an array of objects. Your dump will iterate through the array
dumping each object in turn. The object will contain fields some of which are
objects or arrays themselves and so on. You might discover that unexpectedly
some field is null and thus causing something strange to happen.215

• Exerciser programs as discussed above - all home grown.

An IDE, Integrated Development Environment, is considered by many to be a must-
have. As with editors, people have personal preferences and hates so explore the
possibilities. The advantage of a basic editor is that your main programming tool is the
same regardless of the language you're working on, whereas typically it is a case of a
different IDE for each language.216 With any luck your IDE will provide an environment
in which to run your code in debugging mode.

If the compiler/debugging tools are the engines of your development system then
your library is the wings.

Debuggers tend to cost money or come in
the paid-for IDE The alternatives though
are not pretty.

Programming Version 0.4 Page 189 of 356

217 Possibly on one computer 166 and on another running identical code 167.

218 And then all you might find out is 'it hangs'.

219 Oh and don't forget to actually switch it off will you - You'd be surprised how often it
doesn't.

Small is suspect
Tiny routines are frequently assumed to work. This can lead to embarrassment. If
you're not going to make an explicit test then do a very good visual check to weed
stupidities. Cut-and-paste errors are common culprits here:

method GetMonth(){ return this.month}
method GetMonthName(){ return this.month} // cut-n-paste error!

Small routines are often quickly tested for functionality, often in the main program. The
theory is that if the main program works then the small routine must be also. How can
you improve your confidence that you're not just being lucky?

function FetchMiddleElement(AnArray){
 me = SizeOfArray(AnArray)/2
 return AnArray[me]
}
Oh dear! An even number of elements in the array means there isn't a true middle
element. Quite likely this doesn't matter but so long as the situation is under
control everyone will be happy. Oh dear! An odd number of elements gives an me of
something and a half. If that half gets rounded down the code will work (for zero
based arrays) but who can tell if it will always be rounded down; possibly 333/2 as
an integer is 167217

Reduce sources of uncertainty.
Either by testing, inspection or good programming.
• Address any ambiguities in what's supposed to happen when
• Identify 'iffy' situations that could arise during processing...

• Operations with uncertain results (eg divide by two to integer)
• Boundary conditions (first, last etc)
• Anomalous conditions (eg divide by zero)

• ...and clarify what actually happens. By experiment or altering the code.
This is one of the reasons that programming with threads is so tricky: A lot of things are
happening at once in no particular order. It may takes days of soak testing to discover a
flaw when just the wrong combination of timings conspire to upset your plans.218

Instrumentation
For the purpose of getting the damn thing to work, or improving performance - that is in
a development environment - you may want to insert extra code which records activity
within the code, typically to a log file. The important thing to remember is that this
must be easy to switch off for release.219 A typical bit of instrumentation might be
something like this:

startTime = TimeNow() //@@@
// do some activity
endTime = TimeNow() //@@@

Programming Version 0.4 Page 190 of 356

220 One of the signs of a good design is graceful degradation of service - as opposed
catastrophic.

LogToFile(endTime-startTime . "milliseconds") //@@@
• The @@@'s are handy flags to search for before release
• WCPGW? Spanning midnight.
• WCPGW? Clock not very accurate for short periods. (Typical clock resolution is

50ms.)

Test data
We've already touched on this subject
but there is an important aspect which
needs emphasis. Having structured
data, well annotated with what is being
tested and what the result should be in
each case, is essential. One way of
doing this is to attach the test data to
the code as comments. Another is to
have an index of test data referencing
files of data (and results) in your library.
Or you might have a test harness with the data and outcomes integrated. In the
following hypothetical example file (where # indicates a comment) the third item is the
required result.

byte addition
AddByte(col1,col2)=>col3
2, 2, 4
0, 0, 0
255,1, ex1 # overflow exception
2, -1, 1
0, -1, ex2 # negative overflow exception

Now when you use the harness to fire this test data at your byte arithmetic function you
should see the result "All tests completed correctly".

Or you might have a dummy application that uses all the components. You'll be
amazed how quickly things stop working for no apparent reason. Make sure your
dummy application uses all components and you have a written test sequence.

Repeatability
If you have read-only test data it should be easy to repeat tests.

With databases your tests tend to modify the data, so you need a quick way to restore
pristine test data. This can be more difficult than it sounds because the database may
be evolving and you may be trying to test for a condition that only seems to occur on
the live system.

If you're testing real-time¤ aspects then you may need to simulate real-time inputs. An
example of this is stress-testing where you might load a server with more and more
clients to see how much it can take before something goes wrong.220

Structured testing is honoured rather more
in the breach than the observance. There
are good practical reasons for this.
Whatever method you use you'll find it
really handy to be able to swiftly run
through your application or the modules
just modified to check everything still
works.

Programming Version 0.4 Page 191 of 356

221 A version is a development of an the identical application or unit - Not 'Free', 'Starter' and
'Enterprise' 'versions' which are variants of a product line. It is worth trying to keep the
time-wise (version) and function-wise(variant) separate in your mind, even if they are,
possibly quite rightly, merged in a development environment versioning system

222 I'm not recommending this approach. It might be appropriate - or lead you astray.

Record keeping and versioning
Not a lot of this goes on either! It's quite difficult to do. Large projects find themselves
spending a fortune on it and small projects hardly justify complex databases. You will
have gathered that if the test data is to be matched to the testing and the results
verified that's a lot of different tasks. Add to that the matter of regression testing where
you go back through all the previous tests after making alterations to make sure
nothing has been inadvertently knocked out of alignment and you can see why there's a
lot of short-cutting going on or else nothing new would ever get released.

There is a generally accepted tool for tracking the development (and with it testing) of
software and that is versioning.221 You've seen lots of these version numbers which in
full applications tend to be in four parts something along the lines of

1 New release with lots of added features
2 Bits we really had to tidy up but didn't justify a major change
3 Small modifications
4 Internal build serial

Some people use the file time stamp to identify earlier versions of sources. This saves a
lot of fiddling about when developing code and working intensively on a lot of sources,
but as soon as the code ceases to be work-in-progress it really ought to be called
'version 1' or similar to flag to any maintainer that 'version 1' is a finished entity and
modifications need to be documented.

Where is the documentation? Quite a good place for the details is in the source code.
There's no excuse for not maintaining it as you work on the code and it's ready to view.
If that's not sufficient then you need to develop your filing system.

Milestones
Milestones are points in a project where certain goals are achieved. These are
specifications for what's ready for the next stage. Obviously they can be synchronised
with versions. The first milestone might be getting a barely functioning rough-and-
ready system as a scaffold on which to develop the 'real' application.222 Since your
milestones matter to management, someone is bound to ask what is the state of
testing.

Review

There is no one answer, and anyway there is no one problem. Things might be
happening that are out of your control, or your project is small and self contained, or
you need to coordinate the work of many people across many units and many
organisations.

Programming Version 0.4 Page 192 of 356

223 Easily promised but don't expect too much.

224 So it's strange people still use Internet Explorer.

Bottom-up testing is the norm. Having reliable components is a really great efficiency
boost. When altering a component you need to know what assemblies it is used on.
Sometimes, with general purpose utilities this is practically impossible to trace, but if
possible use some build engine to keep track of these dependencies in order to bubble-
up the 'needs testing' flag.

Developing test data is a bit of art and bit of science. You need to think about two
separate things: Checking how the internal mechanism works and what sort of external
world the code will be expected to deal with.

A suite of test tools will never be far from your side. You may well find you have to
develop your own. This won't happen overnight. Don't forget your filing system will
save you hours if it is well organised and maintained.

Testing for functionality
So far we've tended to think in terms of
'where are the bugs in this code' rather
than 'does the program do what we
would like it to do'. Often throwing test
data at a program isn't enough, it has to
be tried out 'for real' to see where mis-
understandings have arisen, unthought
of snags appear and false assumptions
cause some chewing of beards.

Prototyping
Getting a demonstration system in front of a customer early on is often a very good
idea. The main reason is that you can develop direct communications with the
customer and hopefully users. This will help you understand what matters to them,
where the difficulties are likely to lie, how simple you need to make the user interface
and so on. The customer feels good when they see something and begin to realise how
this new tool might be used in practice. You learn the customer's jargon and get their
cooperation to provide you with some realistic test data.223

Cosmetics count
Would you buy and cherish a collection of bits patched together or an ugly machine
with sharp edges and an annoying whine? No of course not if you had the choice.224

Remember, most people are not very good
at working with abstract visions. As a
programmer you're trained and
experienced but many people need to see
a mock-up before they can begin to relate
to it and have a meaningful discussion.

This is where Real Programmers pat themselves on the back. You have read
between the lines of the requirement and planned for the unwritten needs and
bonuses inherent in the job. Then you spent time putting in the necessary hooks
and allowing room for enrichment. Now the customer is amazed at your foresight
and comes to respect your brilliance and competence.

Programming Version 0.4 Page 193 of 356

225 I was discussing a design detail of a technology demonstrator boat with the chap that had
designed, built then sailed her round the world. "Wouldn't it save a lot of work if..." "Yes"
he replied "But I had to have some features to make it look conventional - not what I call an
'Inventor's boat' "

226 Also I can hack the old program which gives me satisfaction.

But while you are beavering away at programming, paring your code to the bone for
performance and enhancing the interface with all manner of sophisticated options, you
fail to notice that your application is now as pretty as a junk yard and friendly as the
control panel for a nuclear reactor.225

Check the following. Get more than one opinion.
• Appearance
• Readability
• Navigability
• Speed of use
• Ease of learning

Remember that different people have different views of what's good. They also have
different hardware. For example, I happen to use a very old and obscure proprietary
email and news reader. The modern alternatives all seem the same and not half as
good for what I want. They will all read and send news and email but not in a way that
I find convenient.226

Beta testing
Alpha testing is before customers get their hands on the application. Beta testing is
when you've given up trying to find bugs and invite customers to see if they can do
better.

Let's just say that there will always be a period where a complicated new device needs
to settle down and have the wrinkles ironed out. (This applies to all engineering.) How
you manage that process is a moot point. There are two fundamentals:
• The 'boat must float'. Critical failures will be extremely embarrassing.
• There must be a defined relationship between supplier and customer.

• Common goals
• Communications channels
• Realistic expectations

A typical arrangement is to agree to a period of running a pilot, training staff and
loading data during which time the software will be tweaked and bugs fixed. This will
be a stressful period so make it as short as reasonably possible and whatever you do
make sure you've done the best possible internal testing job first.

Separate critical, desirable and cosmetic issues so that you can prioritise your work.
You'll need a way to provide reliable upgrades. Think through and document the
complete update procedures. Typically some upgrades will be no more than copying a
file or two and verifying that the users are actually using the new version of the
program. Or you might have to synchronise updates with changes to a database.

Programming Version 0.4 Page 194 of 356

227 You also need some self-discipline in order to avoid promising anything or rushing off to
knock-up some code 'because it seemed like a good idea at the time'.

228 There's no such thing as Bug Free¤. Just keep clear of crippling faults and unsuitable
design.

229 Another method is "1,000 people use it OK so It can't be that bad".

230 Small is suspect! Run the HTML checker and spell checker on the blog as well as checking
the content for WCPGW?

231 You will be the most highly trained and intellectually engrossed person in the team. You
will have a far greater knowledge of details, design objectives, tools, policies, the way the
team members interact and the current situation than any of the others. Real
Programmers will be professional leaders in all technical matters.

Listening
Having a good relationship with your customers is a good way to discover what sort of
features they are prepared to pay for in a second version. You might be amazed that
when things go wrong users don't tell you. Real Programmers are good listeners, they
will work at it in order to be ahead of the game. You will appear as someone in whom
customers and users can talk to in confidence in order to get to the 'real story'. This
makes a huge difference to the utility of your programs.227

Review
The customer wants what they want - not what they originally said they wanted or
what you (or your team) thought they said. Part of that is cosmetic, part is knowing that
specifications are seldom as complete as they appear (or have false precision), part is
coaxing them through a difficult transition period with clear instructions and a friendly
bug-free228 interface.

Giving the customer what they want is a process that starts long before any code is
written and continues throughout the development.

Quality assurance
Quality assurance is normally a paper-trail229 which gives more credibility to the
statement "this code works". Let's get something straight: You don't need ISO wotnot or
quality engineers crawling over your 20 line program that plays happy birthday on a
given date or your personal blog. You still need to do some checking, and if there's an
embarrassment then the egg is on your face alone.230

For big projects programmers are just small cogs in the machine and shouldn't worry
about QA administration.

What about the smaller project where one or two programmers lead a team or work
alone? Here the operative word is "lead". Ultimately the quality of the finished product
is down to you.231 If you have collaborators then they need a system to share
information and allocate tasks to support your efforts.

Programming Version 0.4 Page 195 of 356

232 This paragraph might seem a bit out of place but it contains one of the most important
ideas in the whole book with ramifications in all professions.

233 It isn't necessary to have formal qualifications in computing. If you're the sort of person
who likes formal courses then look upon their value as being the structured approach and
putting emphasis on details rather than certificate at the end.

OK - Enough! In all but the tiniest or largest projects put your filing system to work.
There are project management tools such as to-do lists, bug tracking lists, test
schedules and version control systems which you can explore. You probably don't need
these development assistance tools as well as a good filing system, but if you find some
that turn out in practice to be useful then make the effort to find out how to get the best
out of them.

Real quality
We need to understand Real Quality systems for two reasons:

1 To apply it to our own development process
2 To build quality into customer's procedures

Competence : Bad-Good-Best232

There is Good, Bad and Best practice. You'll often hear "best practice" talked about but
what the speaker really means is 'good'. Good is OK. Bad is less than OK. Best is
exceptional. Bad is unacceptable. Good is achievable by most people most of the time.
Best is well above average.

A Real Programmer will definitely be in the Best category... ...unless they're showing
signs of human failings such as drinking too much, in which case they become Bad.

Bad behaviour is moderated by a rule book. Good by standard manuals and default
training. Best requires personal commitment to further training, research, projects and
experience.233 Typically the Best people take a wider interest in what's going on around
them and will participate in some way in communal activities. See BGB appendix.
@@@

Risk
B-G-B relates to human competence. Inanimate systems are classified in terms of risk
and consequences.
• Risk is the chance of something going wrong.
• Damage is the consequences of a failure to prevent the risk becoming a reality.
Diligence is the level of attention needed to protect against a risk.
Of course computers don't 'pay attention' so
diligence isn't applicable... ...but reliability is
the equivalent for a program.

Many readers will consider themselves happy to be in with the majority mediocrity.
If you've got this far then you're well on the way to being well ahead of most of the
field. All it takes is another few years of practice...

Making a program very reliable
requires a high level of diligence
by the programmer.

Programming Version 0.4 Page 196 of 356

234 Something to think about (before we get there in a later chapter(@@@ check)) - What are
the reliability and diligence issues with user logins?

235 Umm - well. 'As sure as you can be'.

236 Let's all be worried about increasing centralisation of emergency control centres. Not only
do they have an awful track record of being over budget and getting scrapped when the
simply don't work, but local knowledge is being lost. One morning I phoned the police Me:
"Late yesterday evening..." Pol:"Why didn't you phone us then?" Me: "Because you'd get
lost" Half an hour later: Pol:"Where did you say?" Pol:"Oh yes it's there on the map - and
we're here - Sorry to trouble you again."

If you're designing and building systems for people who are performing high-risk high-
diligence tasks then one of the things you can do to help them is to make extra efforts in
your programs for spotting mistakes or redesigning the user interface to make the
whole process more reliable.234

How can you, as a programmer, tell where the high-risk, high-reliability code is so you
can put extra effort into being absolutely sure your code is fireproof?235 Somebody tells
you or you find out for yourself. This is a job for the system designer.
• They will try to design-out high-diligence-high-risk tasks. If that isn't possible will

be putting safety nets and double checks into the specification.
• They should tell you about high-damage cases of WCPGW. Should, but you'll have

to be following along closely behind with your own WCPGW antennae twitching.
For example sorting and searching for names like McTavish/MacTavish is often
dealt with by having a policy of assuming users can make their own bed and lie in
it, or alternatively silently force one form to be used. WCPGW? What if the
ambulance control centre is trying to find "Mace Road" and your system is 'helpfully'
converting that into "Mce Road"?236

• Deliberate abuse, which we'll look at later, is also a joint responsibility.

So now you've got a reason for testing. You can apply your finite resources to where it
matters most. Your testing of components was looking at 'does this code operate as
specified' in order to be reliable enough to be used in applications. Your functional
testing adds the criterion "Is this application safe".

Built-in system-level quality
The appendix @@@??? explains how built-in quality works. Your programs are part of
the whole system and can be used to
• enforce rules
• split complex tasks into separately checkable parts
• ensure that communications work as they're supposed to
• spot anomalies
• collect statistics and samples for quality management.

Part of this is the system designer's task but Real Programmers will be reading between
the lines in order to design the program details. For example suppose your program
writes a letter referring a patient to a hospital. Naturally it keeps a record in its
database along the lines of who, what and when. Is that the end of the story?
WCPGW? Letters get 'lost in the system' sent to the wrong person or simply filed. So

Programming Version 0.4 Page 197 of 356

237 You probably have no idea how ramshackle communications are in the NHS. Be
frightened! The people who work in the system just treat it as a fact of life - there's
nothing they can do so why worry? Real Programmers could do something about it if the
organisation wasn't so badly managed from the top down. This isn't just a NHS thing -
Poor communications are endemic - and often made worse by electronic systems. On a
personal note: Your diary should have quite a few 'chase foo' entries.

238 What a stink that caused! "We're professionals so we should be allowed to write any old
rubbish". "It's worked up to now" - Yes right - for values of 'worked'.

239 With some extra exciting new ones just to make a change. Some managers just love to
show off their abilities in a crisis. Others wouldn't spot a problem if it landed on them from
a great height.

240 If somebody is threatening to send you on a 'quality' course - insist on a full course guide
before starting. Then apply whatever methods (if any) are promoted to the course itself.
Some are an abysmal rip-off and don't even do administration properly.

your programmer's reflexes fire up and you add in a method of spotting if nothing seems
to be happening to the case.237 In a related case I wanted to ensure separation of
Observation, Decision and Action. The paper form with all parts jumbled on the same
page lead to very poor quality communications, but on the screen I could implement a
three-step wizard to enforce the distinction.238

Review
People who employ programmers seem to think only in terms of specifications, lines of
code and bugs. The WCPGW programmer's mentality doesn't register with them. In
one way this is strange because without it programmers are a liability. Even the
average programmer has some WCPGW flowing through their veins. In another way it
isn't so strange: They're employing programmers to continue making the same
mistakes and taking the same risks as are enshrined in the existing system.239 Because
you will have twigged how to build-in quality to their systems and have a very clear
model, preferably in a well presented report, they get very nervous that an outsider can
so confidently grasp what this quality business is all about without swamping everyone
in paperwork.240

Until you have seen it, you have no idea of the resistance there is to the idea that there's
a logical, professional, less risky way to do things. To start with this is just clinging to a
comfortable traditional shambles. Then the brighter ones realise that if you insist they
split the 'what's happening' from 'what's wrong' and 'what should be done' these things
will be checked from time to time and form part of a decipherable audit trail... ...Which
might lead back to ... them.

When you appreciate how quality, which is really only a word that means, 'doing what
we want to do' depends on knowing what you want to do from the very start and then
applying a bit of risk spotting, ie WCPGW, then you'll be building-in quality to your code
as you go. You won't write code then think about testing it, as you'll have made a note
of what the critical inputs and situations are either as you go or before you start. You'll
still have plenty of bugs in your code that need exorcising but you'll be lying in wait for
them - not the other way round.

Programming Version 0.4 Page 198 of 356

241 Don't be suckered into doing all the testing for a group. How boring would that be? How
efficient would that be? If you get a reputation for reliable code and having a well
organised approach to testing then pass on your skills. Don't take on the responsibility for
clearing up other peoples mess.

I hope you forgive me for writing this chapter back to front. The easy, mechanical bits
came at the front with the difficult bit at the end, You'll have to do a lot more detailed
research into the tools that are appropriate to your particular development environment,
and it takes a long time to develop your testing skills with a variety of complex aids.
Not withstanding this, the quality of your code in its usefulness and reliability
(remember the two aspects - the function and the mechanism) depends entirely on your
determination to do the job well. ie diligence.241

Programming Version 0.4 Page 199 of 356

242 Version 5

 14.Code interlude
How about some hands-on? This chapter is a
look at the practice of programming during
which a lot of the issues discussed in the last
few chapters will be put into practice. You
could call it "a day in the life of a programmer".

Coding
Try to develop code with pencil and paper and YCPL step by step. You'll need to
interpret what I'm writing here in the context of your own development environment.

I'll be using the PHP language242 which should be easy enough to follow. Practically the
only things you need to know about PHP are:
• Variable names start with a $ sign and are not case sensitive
• Variables are not typed so that the code if($a==TRUE){$a=5;}else{$a="five";} is

perfectly valid.
• Arrays are dynamic and associative. So if we executed the following two

statements $a[64]="x"; and $a["y"]=10; then listed the array contents we'd have
an array of two key/value pairs.

• Strings can be single or double quoted. If double then variables are automatically
merged in so $msg="Hello $userName" is valid.

• Object fields and methods are referenced with ' -> ' for example myDate-
>GetDay();

• Other language specific points are commented in-line.

Objective
In the last chapter I mentioned one debugging method of writing a trace of internal
events to a log file. This works by adding calls to some logging function inside the
code. What we could do with is a convenient method of capturing, recording and
displaying this information.

Dive right in
Thought...
• The key executive action will be something like:

function Trace(SomeText){
 WriteLineOfTextToFile(LogFile,SomeText);
}

• We need a way to open the log file before writing to it
• name?
• append or overwrite?

• We must close the file whatever happens
• If we're writing text we can use any editor to view the results.

It's traditional for apprentices to
build some of their own tools. This
is what we're doing here.

Programming Version 0.4 Page 200 of 356

243 For which you need a web server configured to interpret PHP scripts. If it's easy to do
then have a go, otherwise it isn't worth the effort.

...Code
How many lines of code will that be? Estimate : Trace function 3, open file 5, close file
3. Total less than 20. We might as well just type in the code off the top of our head as it
can't be much simpler.

ProgBook/Ch14/v1/tracing.php
<?php // all PHP code starts like this
function Trace($TraceFile,$TextToTrace){ // fwrite is file-write
 fwrite($TraceFile,$TextToTrace."\n"); // dot is string concatenate
} // \n is newline character

function StartTraceLog($LogFileName){ // fopen is file-open
 $traceFile=fopen($LogFileName,'w'); // w for write new
 return $traceFile; // a file handle
}

function EndTraceLog($TraceFile){
 fclose($TraceFile); // fclose is file-close
}
?> // all PHP code ends like this

ProgBook/Ch14/v1/testtracing.php
<?php
include('tracing.php'); // Insert the tracing functions
 // automatically globally available
print('Start
'); // something to show on screen

$tfile=StartTraceLog('logfile.txt');
$x='foo';
for($i=1;$i<5;$i++){
 Trace($tfile,"$i $x"); // variables will be substituted
 $x = $x . $x; // dot is concatenate operator
}
EndTraceLog($tfile);

print('Finish'); // something to show on screen

?> // all PHP code ends like this

When this testtracing.php is run243 it displays Start and Finish on the web page and
creates a file called logfile.txt with four lines.

It works - Hooray! ... Job done. All down the pub... Err... Is something wrong?

Dear reader, the reason I'm writing this book is so that one
day this bletcherous style of programming will be a thing of
the past.

If you're an established programmer you might want to read
the next bit in private - there might just be the odd bad habit
of yours that gets savaged. (My ears go a bit pink too when I
think back over some better-forgotten episodes.)

Programming Version 0.4 Page 201 of 356

244 Bletcherous is computer jargon for something (not somebody) that's disgustingly cretinous
- But I expect you guessed that already.

245 My standard. Yours may be different.

Let the bletchfest244 commence
Yes, lots of things are wrong. Do this now.

0. With the above two code files
1. Write a list of good points
2. Write a list of bad points

It's important you have a go at this exercise before looking at my analysis because it is a
way of gauging your own progress in the art of good programming.

OK, let's see what the good points are:
• Quick to write
• Simple to understand how code works
• Standard245 naming convention used
• Clear layout
• Files are obviously located in an organised filing system
These points make the code useable but that's about it. Definitely on the cowboy side
of workmanlike.

There's a great deal wrong on a number of levels. There are missed opportunities, poor
user interface, numerous error conditions, absent documentation and haphazard
testing. Here they are in more detail:

Coding standards
• There is no identification of what the files are written into the text.

• No name
• No version, date, author
• No title or short description

• There are no comments to explain each function or the way the test operates or
what we should expect to see as the test result. (The comments in the code are
only to explain PHP language elements to non-PHPers.)

• It is normally best to put functions and methods in alphabetical or in logical
groups.

Argument checking
• Trace() requires a file handle as it's first argument. What happens if we call Trace()

before StartTraceLog()? Something unpleasant. What else CPGW with this
argument to Trace()?
• StartTraceLog() fails so $tfile is undefined

Clear layout and clear explanations are vital during
development, during use and during maintenance.

Programming Version 0.4 Page 202 of 356

• Trace() is called after EndTraceLog()
• The $TraceFile argument is supplied as a filename by mistake
• The order of arguments to Trace() is reversed by mistake

• The same applies to EndTraceLog().

Error trapping
• fopen() is prone to failing for all sorts of file-system reasons. Perhaps the file is

already open, or the filename supplied is bad or we don't have the necessary
permissions. But there's no attempt at trapping these conditions, let alone
reporting the issue so something can be done about it.

• The same applies to fwrite() and fclose().

Result checking
• When the test program calls StartTraceLog() the result is assumed to be a file

handle. (A comment in the code would be nice.) StartTraceLog() might fail with a
crash or perhaps silently. In the latter case we've got an undefined variable $tfile
waiting to clobber us. Since we know StartTraceLog() can easily fail we should be
taking a bit more trouble to check to see if we've got a live file handle.

Haphazard testing
• All we've done is see if we can get the functions to work as we expect them to

under ideal circumstances. Cars get put through crash tests to make sure they
perform under abnormal conditions so should your code. In this case we don't have
much to go on because we've not thought through what's abnormal and how we
might test it.

• We've no guidance about what to expect in the log file.

Documentation
• There is none. How is a user (possibly yourself late at night, under pressure) going

to tell in 10 seconds if this is the right tool and if so in 30 seconds how to deploy it?
• How does somebody maintaining tracing.php know there's a test program and vice

versa?
With good coding standards a lot can be done by commenting the source and diligent

When you've got it working
then you start testing.

Don't rely on
unreliable functions

If there's the slightest risk of anomalous arguments
then check them as soon as possible.

• In general, trap exceptions close to their source.
• If the situation isn't completely dealt with then be clear how the

event or consequences of the event propagate.

Programming Version 0.4 Page 203 of 356

246 In at least two easy ways: Changing the directory the file is being written to so not
overwriting the old one. Failing to refresh the editor view.

use of filing system.

Poor user interface
On the face of it you might think the API¤ is nicely minimalist and practical - those
signs of sparse efficiency beloved of every designer. So is a brick!
• Why is the user being asked to look after $tfile? So they can hand it back to

Trace(). • Can't we find a way of 'black-boxing' it, so the user doesn't have to
worry about providing it?

• $tfile will have to be accessible throughout the code wherever it's being used
for tracing, probably deep inside methods. That's going to make it a bit more
difficult to keep track of.

• It would be easy in Trace() and EndTracelog() to mistakenly use the name of
the log file rather than the handle.

• We didn't address the issue of overwriting or appending
• There's no timestamp written to the logfile. It would be very easy to repeat a test

but look at an old log file246

• We've not provided any facilities for
• Logically formatting the logged text. It's quite likely that we want to report

where we are in the program followed by variables which may not be text.
• Switching tracing on and off. Typically we might want to catch only certain

parts of our instrumented code. We certainly want to be able to switch it all off
without physically removing if from the code.

• It would be easy to forget StartTraceLog() or EndTraceLog() or think the code will
operate with them but in practice is somehow bypassed by logic, exceptions etc.

Missed opportunities
• Logging is likely to be a useful facility beyond debugging.
• It is going to be handy to look at complex objects as well as simple variables. We

could use the trace as a way to dump variables for inspection.
• Instant screen display might be a useful alternative or addition
• We may need to limit excessive output or highlight particular items of interest.
• If we had a test(works) program we could use that as an example for users. We'll

exercise all the facilities so that will be ideal as a learning resource. We'd keep the
test(crash) program for ourselves.

Ease of use trumps ease of coding every time.

If you can't remember it (and believe me, you
can't) then you need the documentation.

Programming Version 0.4 Page 204 of 356

247 When you're always on-time there's nobody else to appreciate it but at least you have an
inner glow of righteousness. But when you code right first time even you don't realise the
trouble you've saved. There will always be the temptation to take 'short-cuts'see
what happens when patches start fraying at the edges and learn. One of the signs of an
elite is that they can produce excellent solutions quickly without resorting to sloppy
technique.

248 Don't be afraid to re-think your first thoughts. Books like this one are deceptive as they get
to the finished result without going round loops and up dead-ends. It's a fiction - My
creative processes are probably more eccentric than yours. (The real skill is spotting the
good and culling the bad which will come with practice.)

Review
That was rather a demolition job wasn't it! You probably ought to write the morals out
in cross- stitch or poker-work and hang them over your bed. The big moral is

What's just been shredded is only very slightly 'below average'. Add few comments and
that's about the normal standard. A little bit of practice and you'll be streets ahead.247

In a moment we'll have another go. You might like to spend a couple of minutes
sketching out what the main good points from the user's and developer's points of view
might be.

Second attempt
Do you recall when we were discussing quality that we had a split between the
mechanism and the function? We can use exactly the same split between the How and
the What when outlining our program design. (That's the same as the split between
user's and developer's issues in the previous paragraph.)

If you were a clockmaker the How would be the details of the mechanism. The What
would be the style of timepiece, would it have an alarm, be compact or illuminated.
The whole would be matching the How and the What economically and reliably.

Let's use that as a guide for our first thoughts.248

Synergy is the key to efficient reuse - more for less

Be broad with your ideas,
tight with your technique,
code for completeness.
Build your reputation
on the quality of your programs.

Programming Version 0.4 Page 205 of 356

249 Functions which are not methods inside a class. We haven't discussed these yet but the
upcoming code will be an opportunity.

First thoughts - What
• We're trying to implement a special type of log file
• Trace needs to be able to report any variables.
• Trace needs to be switchable. Log is more of a fixed thing.
• Log files may need special naming such as yymmddhhmm...
• Logs will often need timestamps
• Display: Immediate? HTML? Text? Formatting in columns?
• Log to database?
• Will logs be scanned visually or processed automatically?
• Can multiple programs/users use the same log?
• Trace could do with options to be selective
• Trace needs to be easy to use for instrumentation. Logs can be a bit more involved.
• Users will be looking at log files - may need pretty formatting
• Utilities for weeding old/bloated logs?
• Checks to avoid too many logs being opened by error?
• Log files need closing at end of program (if not before)

Notice the danger of Creeping Featurism. Hey! What about a server for all logs on a
system and a log-control-language and search tools and alert tools and audit trail
reports. At some stage you're quite likely to log important actions to an audit trail in a
database - but perhaps that's something for another day.

First thoughts - How
• Trace sub-classing Log
• Filename can be internal to the log, but specified in constructor
• Class methods249

• Build filenames
• Timestamp formatting
• Possibly organise log paths
• Possibly other file management utilities

• Maybe we should have a class hierarchy of
1 Log - Basic text logging with timestamp and filename functions
2 HTMLLog - Add framework to produce HTML eg tables logs
3 Trace - Switchable, variable dumping with lots of defaults

• Logging to a database is probably getting too sophisticated and esoteric
• When opening files for writing we ought to have some way of dealing with inability

to open because another copy of the program is already logging. (Or the log file
wasn't properly closed on the last run.)

• We could do with a method for deleting a log file and starting afresh. Also one for
renaming and starting afresh.

• Two possible approaches:
1 Write log to memory then write to file in one go at the end. (Any memory

constraints? Do we need a permanent record as we go - say in the lead-up to a
crash.)

2 Have permanently open file and write line by line. (Already demonstrated in
version 1.)

Programming Version 0.4 Page 206 of 356

Can we usefully combine these methods or offer them as alternatives?

The How follows the What. We're already looking at the value of sophistication and
making judgements.

Review
All this takes a lot longer to type than to think about and sketch with pencil on paper.

Notice how the How resembles the bottom-up design approach and the What
resembles the top-down design approach. There are similarities but in a minute when
you get to design you'll be working exclusively on converting the How thoughts into a
design.

Design
It might be worth quickly revisiting the design work we did in @@@, then having a go
at writing your own blueprint. As you'll be the one building the programs and writing
the final documentation you won't have to be particularly detailed, but you must at
least be able to list the components and describe their contents.

Top down
• Three classes in a hierarchy: LOG ... HTMLLOG ...TRACE

Leave HTMLLOG as a shell for now, we can enrich later when we've got a better
idea of What we want to do in that area.

• We can add features to LOG that might be useful in a general context later.
• The extra features TRACE adds to LOG will be

• Simplification of setup
• Ability to switch on and off
• Ability to dump variables (not just text)

Bottom up
1 How will files be named and located?
2 How will we ensure any open files (or other resources) are closed at end?
3 How will we deal with 'cannot open log file'
4 How can we have a globally accessible log file. (How will code operating inside a

black box be able to 'see' the log file?)

Thought for the day

Engineered objects have 'blueprints' suitable to
be passed to a constructor.

Art objects often 'get made' with very little
documentation. The prototype is the finished
article.

And computer programs?

Programming Version 0.4 Page 207 of 356

250 As you expect, a method called when an object is destroyed. Normal variables within an
object will automatically get destroyed but other resources often need special action and
so a special destructor (that overrides the default) is needed.

251 As opposed to those, regarded as a bit dangerous, which have practically universal global
scope.

1 How will files be named and located?
Do we leave naming of log files entirely up to the user or should we provide defaults
which can be overridden. Do we have a default logfile directory? Some logfiles will be
named with dates - how can we provide that functionality?

• Here's an idea. Have the current directory (whatever that might be - we may be
able to execute code but not write files to it - we need to explore this situation in
case users come across it) as the default but then allow it to be changed for all
subsequent openings of log files.

• We could give automatic substitutions of date/time in special forms of filename.
For example "[yymmdd]foo.log". What would be the easiest? What about giving
substitutions for the name of the running program as well? eg
"LoggingFor[AppName]"

2 How will we ensure any open files (or other resources) are closed at end?
This could be a bit of a poser. We can close a file (free memory buffer etc) as part of the
destructor250 or explicitly get the data written to file and close it with a call but what
happens if the application crashes? (That might be why we're tracing in the first place
to see what on earth is so very wrong.) We could do this with some exception trapping
at the top level... ...But see 4.

3 How will we deal with 'cannot open log file'
Do we halt the application if this happens or proceed without logging? As tool makers
we can't really say so we need to give the choice to the user.

4 How can we have a globally accessible log.
Some languages make it very difficult for objects to see outside their scope limits.251
This is going to make it difficult for a method to log it's events unless we can find some
mechanism to bypass this restriction.

This is probably the most difficult part of the exercise. Different languages have
different restrictions and possibilities for circumventing them. Objects are designed to

Class methods:
•Ordinary methods are functions called on an instance of an object.
•Ordinary functions float in system-space unrelated to any object or class.
Class methods are a hybrid. They are defined purely in the context of a class.
They do not relate to instances of objects.

Ordinary function call DoSomething();
Ordinary method call InstanceOfClass.DoSomething();
Class method call ClassName.DoSomething();

Many languages support class variables as well as methods.

Programming Version 0.4 Page 208 of 356

be self-contained with only limited access to a few system-level features. There's a clue
in that last sentence: If objects can't be shared what about classes? (Remember that a
class is a definition while an object is an instance encapsulating private data.)

Notes
1 Very quick to grasp user documentation needed for TRACE
2 It looks like we're going to have a package containing:

• End user programs (3 - 1 for each class)
• End user documentation (3 - could be rolled into 1)
• End user example code (3) Could be same as test (exercise) code
• Own crash testing code (various)

3 The nature of this application is that it should have a long life and wide
application. Therefore we also need to expect some maintenance.

Ready to code?
We haven't yet fully resolved a number of things:
• How to access logging functions from within objects
• Logging to File/Memory
But we're not going to get much further without some concrete code to work with.

The answer to this conundrum is to build a prototype to prove the concepts we're trying
out. There will be all sorts of neglectful practices going on to rattle off the necessary
code but just at the moment, providing we know it's for experimental purposes only,
we're not particularly bothered.

Here is version 2 consisting of just two files very much like version 1 except there are
dozens of lines of code instead of the original handful. (PHP specific notes are given
after the code.)

ProgBook/Ch14/v2/ClassLog.php
<?php
// Log - Proof of concept
// The principle is to add any text we're given
// to an array in the session

define('LOGARRAYNAME','LoggingArray');
define('LOGENABLEDFLAG','LoggingEnabled');

class Log{
// Issues with enabling/disabling logging
// Assume by default OFF so that it can be
// used for instrumentation and switched
// as required.

 public static function StartLog($ForceEnabled=TRUE){
 // If ForceEnabled is false then EnableLog() must
 // be called previously for anything to happen.
 if($ForceEnabled==TRUE){
 self::EnableLog();

Programming Version 0.4 Page 209 of 356

 }
 if(self::IsLogEnabled()){
 if(self::CurrentlyLogging()==FALSE){
 $_SESSION[LOGARRAYNAME]=array();
 }
 }
 }

 public static function CurrentlyLogging(){
 return isset($_SESSION[LOGARRAYNAME]);
 }

 public static function ClearLog(){
 if(self::IsLogEnabled()){
 if(self::CurrentlyLogging()==TRUE){
 $_SESSION[LOGARRAYNAME]=array();
 }
 }
 }

 public static function LogText($Text){
 // main call to log text
 if(self::IsLogEnabled()){
 if(self::CurrentlyLogging()==TRUE){
 $_SESSION[LOGARRAYNAME][]=$Text;
 }
 }
 }

 public static function GetLog(){
 // return array of text
 if(self::CurrentlyLogging()==TRUE){
 return $_SESSION[LOGARRAYNAME];
 }else{
 return array();
 }
 }

 //@@@ we could put a write array to file
 //@@@ method here. Options?

 //@@@ we ought to have some tidy-up
 //@@@ routine as we can't have a destructor

 // --- enabling/disabling logging ---

 public static function IsLogEnabled(){
 $rv = FALSE;
 if(isset($_SESSION[LOGENABLEDFLAG])){
 if($_SESSION[LOGENABLEDFLAG]=='Y'){
 $rv = TRUE;
 }
 }
 return $rv;
 }

 public static function EnableLog(){
 self::SetLoggingSwitch(TRUE);

Programming Version 0.4 Page 210 of 356

 }
 public static function DisableLog(){
 self::SetLoggingSwitch(FALSE);
 }
 public static function SetLoggingSwitch($OnOff){
 if($OnOff==TRUE){
 $_SESSION[LOGENABLEDFLAG]='Y';
 }else{
 $_SESSION[LOGENABLEDFLAG]='N';
 }
 }

}// end of class Log

?>

ProgBook/Ch14/v2/TestClassLog.php
<?php
// Testing proof of concept with class Log
// 1 - OK to use class methods per se?
// 2 - CMs accessible from inside object

require_once('ClassLog.php');
session_start();

// -------- 1 --------------
// o Start and clear log
// o Write a couple of lines
// o Get log as array and dump to screen
print('Start<hr>');
Log::StartLog(TRUE);
Log::ClearLog();
Log::LogText("Hello");
Log::LogText("World");
print_r(Log::GetLog());
print('<hr>End of part 1 of 2
');

// --------- 2 -------------
// o Define minimal class
// o Instantiate
// o Append to log from within object
// o Get log as array and dump to screen

class FooBar{
 public function Fox($SomeText){
 Log::LogText('Inside method Fox');
 Log::LogText($SomeText);
 }
}

print('Start part 2<hr>');
$fb = new FooBar();
$fb->Fox('POC works!');
print_r(Log::GetLog());

Programming Version 0.4 Page 211 of 356

252 "Paamayim Nekudotayim" if "double colon" is too prosaic for you.

print('<hr>End of part 2 of 2');

?>

PHP language specific notes:
• define(...) is PHP's way of establishing constants.
• Function arguments with the form $Foo="Bar" indicate default values if the

argument is not present when called.
• $_SESSION is a system-level array available on a per-client basis if set up with

session_start().
• require_once() is a directive to the PHP interpreter to fetch the named file into the

code at this point.
• Foo::Bar() 252 means the method Bar() of class Foo.
• $foo->Bar() means the method Bar() of the object $foo.

Notes on the proof of concept code
The overall concept is a little different to V1. Lines of text are being added to an array
rather than written to file. (Arrays in PHP are really key/value lists. This is a really easy
way to implement a text buffer which is a nice thing about this particular language.)
The writing to file can be done as a separate exercise. This change means we don't
have to write to a file at all if all we want is a report at the end of the program, or we
can explicitly write the whole thing or we can write the buffer to file whenever we feel
like it. So that gives flexibility... ...A good thing but a challenge for giving a fast
briefing on use.

All the methods are class methods (indicated in PHP by the keyword static.) This ruse
allows an instance of the FooBar class
to access them. At present all methods
are given a visibility specifier of public
meaning we don't care what other code
uses this method. YCPL will have its
own visibility specifiers. You can see
how in PHP these class methods are
called.

There's no constructor or destructor.

Comments are sparse because we are not attempting production quality code at this
stage.

I've used two flags to see what to do when being asked to log some text.
• Has logging been enabled
• Are we actually logging - have we started or do we need to initialise an array
The first test is a switch on/off which allows the logging code to be left in the source
but disabled. The second allows us to initialise the text lines buffer if it hasn't been
already.

Visibility specifiers can be a little slippery.
YCPL's will need long and careful study...
...Other languages may have overtly
identical but significantly different
specifiers.

Programming Version 0.4 Page 212 of 356

253 I've refrained from thundering on about the importance of reading the manual, following
tutorials and continued research because if you can't cotton on to the importance of
knowledge for yourself then shouting at you won't make any difference. However texts
vary a great deal in their quality, currency and appropriateness so feel free to sample even
more sources. Finally: Tools you may read about are not to be judged on 'importance' or
'fashion' or claims that all the top guys use no other - but simply utility.

Notice how there are plenty of user-friendly versions of calls that are really ways of
doing the same thing.

I've noted in the code some additions but left them hanging for the time being. It is far
better to write this sort of thing down than only think of it again after the production
code has been produced. There is a temptation when converting prototypes to forget to
add in the bits that were deliberately left out of the prototype.

At this stage we're testing to see if the concept will work so quite a trivial test program
will suffice. It's in two parts :
• Will the calls work normally?
• Step up the challenge by calling from within an object.

Ready to produce the final version?
Tempting but definitely no.

Essential review
We need to review what we've just produced because there ought to be issues arising
and matters that have been highlighted in the course of turning a collection of ideas
into concrete code.
• Suppose we could find a way to store the text array in the class: Then we wouldn't

need to mess around with that (very handy but one more complication out of our
control) system-level $_SESSION array. We'd need something like a class method
but a variable.

• The same would apply to other state such as the on/off flag.
• Why are there so many methods for switching the on/off flag? Do we need them?

Are the users going to have any trouble if we excise EnableLog() and DisableLog().
I shouldn't think so. Also it is a single command call for them to get to grips with
rather than three - so that should be easier.

A quick read of the manual to refresh our language knowledge253 reveals that we can
have Class variables. This might strike you as a bit strange - surely a class is an
abstract collection of methods so having data inside a class is peculiar to say the least?
Very useful though if used in moderation as we are about to find out. As there's only
one class there's only one 'instance' of a class variable. (If we needed more than one log
at a time we could implement a list of logs - still a single data object but with distinct
sub-elements.)

In this particular application there will never be an instance of Log. Often it is
possible to mix class methods and variables with ordinary methods and fields. For
example we might have a User class with instances containing user details and a
few management functions such as keeping track of how many users are logged on
at a particular time.

Programming Version 0.4 Page 213 of 356

Perhaps we should cull those unnecessary switching routines.

Second prototype
ProgBook/Ch14/v2a/ClassLog.php
<?php
// Log - Proof of concept - Variation 1
// Try keeping all flags and data as static variables

class Log{
// Issues with enabling/disabling logging
// Assume by default OFF so that it can be
// used for instrumentation and switched
// as required.

 private static $loggingEnabledFlag = FALSE;
 private static $loggingArray = array();

 public static function StartLog($ForceEnabled=TRUE){
 // If ForceEnabled is false then SetLoggingSwitch(TRUE) must
 // be called previously for anything to happen.
 if($ForceEnabled==TRUE){
 self::$loggingEnabledFlag=TRUE;
 }
 }

 public static function ClearLog(){
 if(self::$loggingEnabledFlag){
 self::$loggingArray=array();
 }
 }

 public static function LogText($Text){
 // main call to log text
 if(self::$loggingEnabledFlag){
 self::$loggingArray[]=$Text;
 }
 }

 public static function GetLog(){
 // return array of text
 if(self::$loggingEnabledFlag){
 return self::$loggingArray;
 }
 }

 //@@@ we could put a write array to file
 //@@@ method here. Options?

 //@@@ we ought to have some tidy-up
 //@@@ routine as we can't have a destructor

 public static function SetLoggingSwitch($OnOff){
 self::$loggingEnabledFlag=$OnOff;
 }

}// end of class Log

Programming Version 0.4 Page 214 of 356

?>
The test program is almost identical. As we are running this without the $_SESSION
system variable we remove session_start();

Discussion of second prototype
v2a has 54 lines compared to 94 in v2. The difference is more pronounced if only active
code lines are counted. What's happened? Unnecessary functions have been culled
and we've streamlined the 'are we currently logging' business.
• We've proved the concept of Class variables works. Instead of writing lines of text

into an array in the globally accessible $_SESSION we are now working with a
locally declared array specific to the Log class.

• There is no constructor or destructor to a class (there are for objects of course) so
this needs some careful thought. With PHP we can initialise a class variable at
'compile' time so that makes life easer. We will still have problems if there are any
open files and we don't find a way to automatically close them if the program halts
under duress.

• We've been able to do away with the business of seeing if we are currently logging.
We needed that originally to be sure of initialising the text array. Now, by the
feature of having the class variable automatically initialised for us, we don't have to
worry. (Check YCPL documentation on this subject - there are probably
restrictions.)

• In fact we can probably do away with StartLogging() as well. It doesn't seem to do
anything that SetLoggingSwitch() doesn't do.

Review
If you read the texts on program design you'll get a lot of stuff that tells you about
formal specifications and formal documentation. In engineering terms these are the
stages to get to blueprints. But if you're not manufacturing from scratch the prototype
might contain most of the information itself.

So far (it will come) we haven't dealt with the associated documentation to enable use
and maintenance.

The important part of this design is the way it is implemented not the underlying
concepts. The production phase will be "I'll have one like this to production standard
please". This won't always be the case - after all we're dealing with something quite
simple here without complex interactions and responsibilities - but there is a danger of
equating 'blueprint' with 'design'.

We have learnt a lot from our prototyping and now have a good foundation for
production code.
• Hone techniques by exploring possibilities. The more alternatives you investigate

the better you'll be able to judge what combination of options to use.
• Simplify. Don't be afraid to cut out features or leave them as to be investigated

further.

Ready to produce final version?
Not quite. Those @@@s shouldn't be left until we're into the production phase.

Programming Version 0.4 Page 215 of 356

• Do we need to do any tidy-up with the code as it stands? As it happens not in PHP
but some other languages might. WCPGW? If we've used some memory and fail to
release it when we've finished with it we could end up with a memory leak. Each
time we fail to release a buffer it might remain unavailable for other programs and
could eventually mean there is not enough memory left for them to run.

This is one of those fundamental programming rules: Whenever you claim a
resource - whether its creating an object, opening a file, opening a communications
channel, or reserving memory - always, immediately code the guaranteed release
method.

• We had quite a few things to say about the hassles associated with files when
looking at the first attempt. So far we've ducked the issue but we do need to bite
this bullet if we're to have proper logging functionality.

By the way, we also had things to say about timestamps but these seem to have been
quietly forgotten.
• Correct. How did you find that out? By looking at the design. You'd be surprised

at how often design documentation is write-only. It might be a bit unfair here
where the information is buried in a long tutorial, but the design is your reference
document. (In a while we will revisit it anyway in the light of our prototype to see if
there are any lessons we can incorporate or important observations that a future
developer might find useful.)

• Timestamps didn't seem to need much exploration. There won't be much difficulty
in converting the current time into text...

• ...Except there might be user-friendliness issues. A typical procedure would be to
knock up a dummy and ask a sample of users what they prefer. That's as important
a use of prototyping as technical proof of concepts.

Completing code exploration

ProgBook/Ch14/v2b/ClassLog.php

Add three Class Variables with suitable default initial values.

 private static $filePath = '';
 private static $fileName = 'log.txt';
 private static $timeStampStyle = -1; // none

StartLog() stays unchanged. Perhaps we could add in an argument to set the file name
and path all in one go? That looks like the quick-n-easy functionality we want for
tracing, so let's leave it for now.

ClearLog() stays unchanged.

LogText() gets the addition of a timestamp. The way this optional feature will work is
the user will specify one of three standard formats to use beforehand. (Date formatting
is rather tricky, so this simplifies the operation for the user.)
 public static function LogText($Text){
 // main call to log text
 if(self::$loggingEnabledFlag){

Programming Version 0.4 Page 216 of 356

 // possibly add a timestamp
 if(self::$timeStampStyle!=-1){
 $ts = self::TimeStampStr(self::$timeStampStyle);
 }else{
 $ts = '';
 }
 self::$loggingArray[]=$ts . ' ' . $Text;
 }
 }

GetLog() remains unchanged. In fact this is a mistake because the log might be in a
file not in memory. We'll see how this error gets spotted later... ...or perhaps the
program will be released without any further thought...

Timestamps
Add a new function that returns a string version of the current date/time in a standard
format. We need this for two purposes: Adapting file names in the case of repetitive logs
and prefixing logged lines. The curious combination of letters indicate the sort of
element to use as components. For example M for short month name, m for two digit
month number. We can make this private, that is not accessible from outside the class.
 private static function TimeStampStr($Mode=0){
 // Return a timestamp in pretty string.
 // Default format is H:i:s
 // 1 ... j M y H:i:s
 // 2 ... j M y H:i
 // 3 ... ymd (for filename)
 // 4 ... His (for filename)
 switch($Mode){
 case 1 : $f= 'j M y H:i:s'; break;
 case 2 : $f= 'j M y H:i'; break;
 case 3 : $f= 'ymd'; break;
 case 4 : $f= 'His'; break;
 default : $f= 'H:i:s'; break;
 }
 return date($f); // formats according to $f
 }

Add a new function so that
each day we can have a new
log file named for us
automatically. For convenience
we give the user special
substitution codes to use "!D"
where the date is to go and "!T"
where the time is to go. Of
course these are optional. We don't want to give the user access so it's private.
 private static function FileTimeSubstn($PlainFileName){
 // Substitute !D and !T with date/time in file name
 // WCPGW - null string
 $f = str_replace('!D',self::TimeStampStr(3),$PlainFileName);
 return str_replace('!T',self::TimeStampStr(4),$f);
 }

Filenames which are going to be catalogued need
to be carefully formatted.
• Leading zeros to keep numbers the same length
otherwise 3.txt will sort after 10.txt.
• Most significant part at the front for the same
reason. eg yyyymmdd...

Programming Version 0.4 Page 217 of 356

Finally in the timestamp department we allow the user to switch the style used for
stamping each line.
 public static function SetTimeStampStyle($StyleNumber){
 // -1 for none WCPGW?
 self::$timeStampStyle=$StyleNumber;
 }

Writing to file
The overall method is for the filename and path to be established ahead of calling a
write method.

 public static function SetFileName($FileName){
 if($FileName!=''){
 // WCPGW with time substitutions?
 self::$fileName=self::FileTimeSubstn($FileName);
 }
 }

 public static function SetPath($Path){
 self::$pathName=$Path;
 }

 public static function WriteBuffer(){
 // user function (probably more variants to come)
 // Dumps whole buffer to file in one go
 // returns null string or error message
 return self::WriteToFile(FALSE,TRUE);
 }

 public static function GetFullFileName(){
 // Let user know where their file is
 return self::$filePath . self::$fileName;
 }

 private static function WriteToFile($Append=TRUE,$Clear=TRUE){
 // This is the private method that does the actual job of
 // writing text to a file. Return an error message
 // or a null string.
 if(Count(self::$loggingArray)==0){
 return ''; // nothing to do WCPGR
 }else{
 if($Append){$mode='a';}else{$mode='w';}
 // errors opening file contained (@ stops reporting
 // $fhandle = false if a prob)
 // WCPGR other file errors?
 $fhandle = @fopen(self::GetFullFileName(),$mode);
 if($fhandle){
 foreach(self::$loggingArray as $t){
 fwrite($fhandle,$t."\n"); // WCPGW? line endings
 }
 fclose($fhandle);
 if($Clear==TRUE){
 self::$loggingArray=array();
 }
 return '';
 }else{
 return "Unable to open log file: " . self::GetFullFileName();
 }

Programming Version 0.4 Page 218 of 356

254 The @ in PHP absorbs exceptions. fopen returns false if an error so we still know about it.

255 At this point we could review our design in order to confirm these suspicions.

 }
 }

The method we've used to deal with file-open errors is to pass a message back as a
function return value so that the user can take whatever action they feel is appropriate
in the circumstances. We trap any exception and suppress it254 and instead replace it
with a more benign version of 'it didn't work!' message.

WriteToFile() is private. This means we have control over when it will be used and
what arguments are given to it. This should make it simpler to protect against
improper use.

WriteBuffer() is user friendly wrapper for WriteToFile(). There will probably need to be
more versions such as perhaps AppendBuffer() in the final code.

ProgBook/Ch14/v2b/TestClassLog.php
I expect you can guess what extra bits were added to the test program.

Review
That's quite a few extra lines of code with lots of cross-calling and tricky bits that need
explaining. What a good thing we didn't try to do everything at once otherwise we'd
have got lost or bored or confused.

Notice there were some WCPGW comments. When you think of a potential problem
scribbling down WCPGW and moving on is a much better method than hoping you'll
have the same thought when creating the production code.

Although we've got a few uncertainties about writing to file it's pretty much clear that
we've got a workable system. Also we can easily see how to add features like 'count to
ten lines then append to file'. HTMLlog and Trace derivatives don't look like they'll
cause us any problems, the HTML aspects are all just 'add-on' and Trace is probably
just a few functions to simplify quick, temporary logging.255

Prototyping principle
The object of prototyping is to see How to make something work. This applies as much
to a database or a protocol or a data format or a web site design as it does to a
conventional program. If you need to confirm or clarify something then it's worth
prototyping.

Building a prototype is stage one. Stage two is reviewing it. Don't forget stage two!

Question :
Hey but why build a prototype when I can just write the whole thing straight off?

Answer :

Programming Version 0.4 Page 219 of 356

256 You'll need to write clearly, check spelling and details. Yor code mite be brill cept if you
express it can't then everybody won't be crediting you!!!

• What have you lost? Nothing. Your production code will be a spruced-up
prototype.

• You're not committed to your first thoughts. Conclusions of reviews are easier to
implement at early stages.

• You have a boundary between the essentially creative phase and the essentially
mechanical phase.

Shall we code?
Let's review the parts of the complete project.
• Code itself
• User documentation
• Benign exerciser program (Test and example)
• Crash testing program
• Development notes and configuration
Where should we start?

We will be working on all of them in parallel to some extent so the first thing might be
to create the filing system and shell documents. It is a lot easier to add to an existing
document framework than stop, think about the format, think about the structure, then
add a bit. By the time you've finished you've lost your original train of thought.

Document formats
If you're keen on blueprints such as UML then you'll need some editing tools, but at
some stage you might want to make sure that the documents themselves are viewable
without the tools.

Likewise user documentation needs to be accessible. This probably means HTML and
PDF although plain old text is often quite sufficient. Unless you're developing a huge
application you shouldn't need fancy navigation - just provide a good index and table of
contents.256

Unless you have a really good and fast diagramming tool, try to leave pictures out or
keep them on backs of envelopes. You can spend ages fiddling with graphics. On the
other hand, simple graphics that give instant overviews can be good for quickly
orientating readers.

A lot of documentation will be in the source code in one way or another. Some of this
might get extracted automatically to generate an API. Check out the tools to do this
and the variations on comments they use to achieve this. Typically the results are in
HTML on a class by class or file by file basis so you may need a backbone to tie them
together.

Document structures
There is no 'best' structure, the important things to remember are
• Ease of creation and maintenance

Programming Version 0.4 Page 220 of 356

• Utility
• Simplicity of access. That is a good filing system.

Plan of work
We're already half way through the plan of work.
1 Appreciate the task. Get a gut-feel for (a) What (b) How (c) Amount of work
2 Top-down design
3 Bottom up design
4 Proof of concept and prototyping
• Plan production (Current task)
• Finalise design and review estimates of amount of work
6 Finalise development environment
• Write user documentation
• Write code. NB Possibly in stages.
• Get code to work (Exercise)
• Check code works (Crash test)
8 Build finished package of deliverables
9 Consolidate development documentation and review
5 and 7 can get mixed up and there might be some grey areas.

User documentation - Now!
You don't have to write the user documentation before getting stuck into coding. In fact
there might be hardly any user documentation but lots of technical reports on the
results of prototyping, algorithms used and so on (How) - In which case make a start on
that instead.

There is a reason for writing the documentation before the code if there is a good match
between the final specification and the delivered documentation. Basically you can
cheat by using the user documentation as your specification. You'll want to add side-
notes of your own, for example exception conditions that you'll be wanting to check
with testing.

There is another good reason for writing the user documentation at this stage. If you've
been working hard on code while tinkering with the prototype then this will
• make a nice break from code-wrangling

This process will be slightly different for each project. Small stand-alone programs
will be done 'on the back of an envelope'; large applications by many team players
supposedly coordinating efforts through a shared work environment. It can be
applied in rough detail to a large project on the back of an envelope or with great
precision (and expense) to a single critical component.

You might be employed to start at 7 but you still need to be au-fait with the
background and within your own little sphere do the whole 1-to-9.

If you're ever parachuted into a project use this list as an agenda to find out where
things have got to and which bits have an unpleasant smell about them.

Programming Version 0.4 Page 221 of 356

257 What does that tell you about that shelf full of 'You too can manage a mega corporation
over lunch' books... ...and the 'managers' who buy them?

• be a change of view from the How to the What which might uncover odd issues.

User documentation - components
For our project we can identify three components:
1 User guide - Overview, origins, purpose and scope.
2 API - To be mechanically extracted from source
3 Exercise (test) program

Item 1 is probably best written with a handy word processor then converted to PDF.
Item 2 will probably be produced automatically in HTML
Item 3 will be source code

Writing the user guide
Read some to find out what structure and style to use. Perhaps the most important
things to remember are:
• Few people can be bothered with words these days. It doesn't matter how many

times you shout at them to RTFM, they won't....
• ...So try to provide some instant gratification or make them jump through stages.

Compare:
(page 1) "Before you start ... " (page 3) "Installing" (page 6) "Start the program"

With:
"There are only three steps: (1) Checklist (2) Install (3) Run"

And:
"Welcome to Super-Foo. You're only 3 minutes from seeing your first bar
• Is my system ready? – See page 3
• How do I install? - See page 6"

• Why do you think books like 'Card-walloping for idiots' are full of pictures and big
writing? That's the level of many users...

• ...But as technical documentation for technical people 'Learn
Loxodrome in 12 minutes' books are pretty hopeless.257
Instead they want rapid access to specific data in a concise
format.

• The general explanations and getting started type of
approach may not be suited to the technical approach in
which case you'll want to physically split 'User guide' from 'Reference'. It's probably
a good idea to logically split these two anyway.

• Even if your program is just a module to be used in a bigger program there still
needs to be some overview information (as well as the technical) in order that other
programmers, (they're the users if you think about it), get hold of the right end of
the stick, know what stage of development it is and where to take care.

Review
It's quite important to pause before launching on the production code. You'll have no
bother restarting as your explorations have shown you clearly what's to be done, the
difficult bits have been cracked and now you can concentrate on a combination of loose
ends and quality of finish.

• Crisp
• Structured
• Tabular
• Indexed

Programming Version 0.4 Page 222 of 356

258 I can heartily recommend a two screen system so you can flick between documents
without covering up too many.

259 I wrote my own for PHP so my in-code comments that will be turned into a user-friendly
API reference will be non-standard.

260 A word processed file might be as easy but it would need quick switching of editors.

Your documentary tools are all set up for instant access so you can switch between
them as you go.258

One things you might want to put in hand before embarking on production code is
acquiring sample test data. This often takes time to arrange.

PRODUCTION_PREPARATION_EXERCISE
0. With the logging exercise as described above
1. Set up filing system
1.1 Create skeleton documents
1.2 Organise the necessary editors ready for efficient use
2. Write a things to do list
3. Write the introduction to the User Guide
4. Check you know how to use automated documentation tools

On the production line
Here's a flavour of production coding. There will be quite a bit of skipping about and
loose ends to come back to later.

Plan
• After the code, the API will be the main thing. We can generate this with a

documentation tool using in-code comments.259
• We'll concentrate on Log with HTMLLog and Trace tagging along. (We need to

make sure Log is capable of supporting the inherited classes, but also we need to
be confident it works properly before using it.)

• We can use an exercise program as a sample to be packaged with the code. Call
this TestLog.php

• We need a way to stress test Log. This may need multiple programs and peculiar
configurations. Perhaps we'd better start with a file called Testing.txt260 for
documenting this aspect.

Start production
• Create production directory
• Copy prototype code to production directory
• Create a file for our own notes

ch14\prod\DvntDoc.txt
Chapter 14 development documentation

TODO
* ClassLog

Programming Version 0.4 Page 223 of 356

 Smarten up in-code docn/comments
 Flag TODOs
* Create ClassHTMLLog and ClassTrace and etc

As a real programmer you might not have bothered with details of the TODO
unless it was approaching time to finish for the day. The important thing is that
this file is instantly ready for immediate jottings as we think of them. As time goes
by you can add STATUS and PROBLEM or any other headings. In theory, one day
all that will be left is STATUS.

• Tidy up the header comments of ClassLog.
ch14\prod\ClassLog.php

<?php
/*
 LOG (class)
 ===
 General purpose logging to memory buffer and file

 Peter Fox
 See Ch14/prod/DvntDoc.txt for status etc.
*/

• /*...*/ is a block comment in PHP. Most languages have something similar.
• My personal documentation standard here is name on line 3 and short

description on line 5. Your documentation standards will be different.
• The last line is a bit of a cheat. At the moment it's the best we can do

otherwise we'll be spending all our time marking changes here when it's a very
fluid 'work-in-progress' situation.

• Tidy up the class description comments
class Log{
#--
Class methods for logging text to memory
array with optional dump to file
(This class cannot be instantiated)
Usage is fully illustrated in TestClassLog.php
#--
• Jot a note to copy the prototype TestClassLog and scheme some suitable

presentation.
• Add documentation to fields

 private static $LoggingEnabledFlag = FALSE;
 # Master switch that disables logging when false (default)
 private static $LoggingArray = array();
 # Buffer
 private static $filePath = '';
 # If this is a null string we'll write the log
 # to the current directory ([T] may be execute only!)
 private static $fileName = 'log.txt';
 # This is the *actual* file name being used for logging
 # May be different to name of file *as specified by user*.
 private static $timeStampStyle = -1; // none
 # Integer corresponding to TimeStampStr() argument used
 # to prefix text lines. -1, default, is none
• We have to consider who might be coming along later in a maintenance role

and needs to know exactly what's what.

Programming Version 0.4 Page 224 of 356

261 I'm using the term 'crash test' for 'trying to break it' testing. As opposed to exercising
which is a benign form of testing. The distinction is important. In this example we'll be
handing over the exerciser to the user and keeping the crash tester for ourselves.

262 This is quite an important matter of self discipline and efficiency. There is no reason to be
repetitious unless you need information collated in different ways.

263 If you're keen you could copy the first four items into a checklist format in your
development notes. eg

Q : Any missing?
A : []

Then fill in the answer boxes as you go. This is the sort of thing you might do as part of a
formal quality system.

• [T] is a TODO tag alert. This will prompt us to crash test261 the issue
sometime. (There's no need to write it in the development notes as well - one
knot in a handkerchief is enough.)262

Review
So far we've followed the conventional pattern of:
1 Identifying the file and its contents in a file comment
2 Describing a class with a class comment
3 Documenting fields
before getting onto the methods. We haven't changed any code, simply bringing the
prototype up to production standard by means of decent comments.

Methods
The next stage is to look at the methods. Now we've had a little interlude we can do
this at a number of ways:

• Have we got the right mix of methods for live use?
• Any missing? Any surplus?
• Is there any How that doesn't feel right?
• Which bits of the code are the core of the action.

Then on a lower level
• Are the methods arranged in the code with some logic
• WCPGW with method arguments
• WCPGW with logic
• Where should user documentation be clear? (What)
• Where should developer's documentation be clear? (How)

That's a lot of things to do all at the same time. I suggest two passes: Reflect on the
first four items making notes as you go then get stuck into nitty-gritty coding one
method at a time.263

Reviewing methods
• Mix? Difficult to tell. We've 'sort-of' covered all general logging bases. There's that

matter of append or overwrite buffer that might be better cleared up. Perhaps we
should give the user a one-shot method to write to a named file.

• Missing?
• Let's add a 'WriteFile(filename,overwriteflag,clearflag)' method for general one-

step use.
• At some stage we're going to need to know the number of lines in the buffer in

order to add a function to automatically force append to file after so many

Programming Version 0.4 Page 225 of 356

264 Perfection is achieved, not when there is nothing left to add, but when there is nothing left
to remove. - Antoine de Saint-Exupery

lines. We could count these in LogText() to trigger the necessary flush.... ...As
it seems the work of only a few lines of code we might as well add it now.

• There are some @@@s hanging around still telling us to look at a tidy-up
routine. OK - Bite the bullet - What do we need to tidy up? We don't ever have
any files left open so our code is well behaved from that point of view. We
could clear the buffer in case it contained a massive amount of text, but we've
already got a method for doing that. PHP will garbage collect¤ the buffer
automatically, so it looks like the most we need to do is warn users of resource
implications - but then our users will be developers and should know that for
themselves. Conclusion: After consideration it's a non-issue.

• Surplus? StartLog() doesn't do anything that SetLoggingSwitch() doesn't do. Either
it's surplus or doing the wrong thing. The only other thing we could use it for is to
set up a file name/path, but since we've got perfectly good methods for that let's
excise it. 264

• Anything still not feel right?
• SetPath() takes any argument at face value. Ummm.
• Could do better with the arguments for SetTimeStampStyle(). This is a user

function where they're expected to put in a magic number. Perhaps we should
give them some help to save them having to grovel through documentation to
find the numbers. Two ways spring to mind : (a) No-argument functions (b)
Defined constants. (For pedagogical reasons we'll use the latter.)

• ClearLog() and GetLog() are
not really properly named as
they work on the buffer array
not the log file. We need to get
a grip of terminology. Perhaps
we should define 'Buffer' and
'File' and ban the use of 'Log' when we mean one or other of these. In which
case these become ClearBuffer() and GetBuffer()... ...Which suggests we need
ClearFile() and GetFile(). (This is almost prototype territory. Don't be afraid to
revisit the prototype if things aren't right. It is far better to deal with lash-ups
now rather than later.)

• Core code?
• LogText() is where important action happens and is likely to be more involved

with descendent classes.
• TimeStampStr() contains non-obvious technical matters
• FileTimeSubstn() happens at a certain time to fix !D and !T. Are we calling it

at the right time?
• WriteToFile() has a fair bit of logic in it and may have to handle exceptions and

generate error messages.

It's quite normal to have to weed out and
clarify terms that have developed during
the earlier stages. You might want to add
it to your checklist.

Programming Version 0.4 Page 226 of 356

265 @@@ is the tag I use for 'Loose end'. Anything similar that is easy to search for would
work.

You'd probably be
making cryptic notes
in the code with
@@@'s265 or
writing stubs
(methods that don't
yet do anything)
rather than typing
everything out like
I've done above.

Review (Methods review)
This pass should have clarified what code and documentation to work on.

Now you're free to focus tightly on small technical areas at a time. This reduces scope
is quite important, as for every method there is probably something to exercise it and
possibly some testing of WCPGW to set up.

Computer programming at last!
Very many programmers think the next phase is the start and end of computer
programming. (Lots of them leave out the exercising, testing and documentation parts
as well.)

You've done all the hard creative, fluffy bits. Now you're putting everything in exactly
the right position and checking the bits fit together. Your current task turns out to be
lots of little jobs where the challenge is in the details not the underlying method. Until
now we've skipped a lot of minor issues, but now they're identified we can (a) code (b)
exercise (c) test them.

 #---
 public static function LogText($Text){
 # Add Text as a line to the log buffer
 # This method is en/disabled with SetLoggingSwitch()...
 # NB ... Default is OFF
 # See also SetTimeStampStyle() and WriteBuffer()
 # If ForceAppendToFile() qv is used then this might
 # return an error message to complain about bad file name
 # or permissions etc.
 #---
 if(self::$loggingEnabledFlag){ // master switch [E][T]
 if(self::$timeStampStyle!=-1){ // any timestamp? [E][T]
 $ts = self::TimeStampStr(self::$timeStampStyle);
 }else{
 $ts = '';
 }
 self::$loggingArray[]=$ts . ' ' . $Text;

The more you can do in your head without 'dropping stitches'
the better. That's why when you're working on developing
production code you don't want any interruptions or
distractions. If you share an office then make it clear you're
not to be disturbed, divert the phone, and switch off intrusive
'new email!' notification. Much better, work alone. NB When
you surface at the end of a deep code session it doesn't mean
the others have as well!

You should easily be able to double your productivity by
decent isolation.

Programming Version 0.4 Page 227 of 356

 // Might be more lines in buffer than we want [D][E][T]
 // So force appending lines to file
 // @@@ $arrayLinesLimit and ForceAppendToFile()
 if(count(self::$loggingArray)>self::$arrayLinesLimit){
 return self::WriteToFile(TRUE,TRUE);
 }
 }
 }
• We identified this as an important method so we've made a good effort with the

method description.
• Adding that flushing logic on the bottom was only a few lines... ...but it's

introduced a new Class Variable and function to set it which we need to follow up.
Also, as we've documented the flush might produce an error message result.

• [D], [E] and [T] are flags to remind us we need to Document, Exercise and Test
these items and logic.

ClearLog() and GetLog() renamed to ClearBuffer() and GetBuffer().
• Don't forget to change any other references.
• Add method documentation. Not a particularly important method from the user's

point of view so we don't need much.

• Add [T] for GetBuffer() - Does an empty buffer cause any problems
• Do we really need to [T] for the $loggingArrayFlag test? Probably not as we've [T]'d

it already in LogText() and we know that if we'd mis-spelled it the PHP compiler
would complain.

• ClearFile() and GetFile() are stubs or ToDos in the file handling section eg
// @@@ public static function ClearFile() NB loggingEnabledFlag!

 #---
 public static function ClearBuffer(){
 # Delete any lines of text in the buffer [E]
 #---
 if(self::$loggingEnabledFlag){
 self::$loggingArray=array();
 }
 }

 #---
 public static function GetBuffer($Flush=FALSE){
 # Returns an array of items in the buffer [E]
 #---
 // return array of text
 if(self::$loggingEnabledFlag){
 $retVal = self::$loggingArray; // [T]
what if array is empty?
 if($Flush){self::ClearBuffer();}
 }
 }
• It seemed so easy to offer the user the choice of

flushing the array after getting the contents that
it got added in just a few seconds...

• ...But it's introduced a basic programming error.
Because in PHP return causes an immediate
end of processing the current routine we can't

This is a classic example of
how a 'trivial' change can
clobber code that has
worked perfectly.

Afterthoughts are good
before testing but slippery
afterwards.

Programming Version 0.4 Page 228 of 356

266 Keep reading to see if anyone will ever find out before the code is released!

267 Many people find that working from examples is a lot easier than tutorials or references.

just add another line after the existing return that reads the array. ie
 return self::$loggingArray;
 if($Flush){self::ClearBuffer();}

would never get to execute the flush. Obviously we can't clear the buffer before
reporting it! So we've got to make a temporary copy, then flush, then return
$retVal. But that last tiny step is missing!266

The 'master switch' needs explaining and how many times will people try to log but be
disappointed when nothing happens?

Perhaps we should set the default to ON. But then users would happily code
without the need to think about where to put a master switch... ...until they needed
it and might end up only partially disabling logging. It's a debatable point.

 #---
 public static function SetLoggingSwitch($OnOff){
 # This method is a 'master switch' that enables or disables [E][T]
 # all logging. IMPORTANT : The default is OFF([D] FAQ?)
 # $OnOff is a boolean
 #---
 self::$loggingEnabledFlag=$OnOff;
 }

Review
We've been caught out a couple of times by making quick changes. The better you get
the less risky off-the-cuff alterations are... ...but if you're not 100% immersed in the code
you are likely to slip up. So that's an automatic prompt for a '[T]'.

So far we've done one of the three
segments of code. ('Basic logging
to buffer' out of 'Timestamps' and
'filing'). This is a good place to
stop to at least exercise the code
we've just been messing about
with. Even if we can't test yet we
should be making notes or elements of testing ready for later.

Exercising
The exercising program will be a cousin of the TestClassLog program used before.
Remember that we've decided to kill two birds with one stone by making the program
available to the users as an example267 as well as a 'can we get it to work' tester.

• Before we start, we've got to identify the code, what it does and what it applies to.

• We also need an environment in which to run the code. In this case it amounts to a
very simple print out. As PHP's built-in list an array function isn't very pretty lets

Logical segmentation of code is a good idea if
you can arrange it. The boundaries between
segments will often be grey but that doesn't
matter, the main thing is that you can focus
tightly on a small amount of code.

Programming Version 0.4 Page 229 of 356

write our own.

A simple method is
• list the methods we've just worked on in the code
• work them into a story...
• ...with ToDos for options

ch14\prod\TestClassLog.php
<?php
/*
 Test ClassLog
 =============
 This program illustrates the features of ClassLog
 and shows how they might be used.

 Peter Fox May 2006
 See ClassLog.htm for complete documentation
 See Ch14/prod/DvntDoc.txt for status etc.
*/

// Always required
require_once('ClassLog.php');

function ListArray($AnArray){
Convenience function to list lines from an array
\n character becomes a
 for screen display purposes
 if(count($AnArray)==0){
 print("<i>No items in array</i>
");
 }else{
 foreach($AnArray as $t){
 print(nl2br($t) . "
");
 }
 }
}

// --------------------------------
// Basic logging to a memory buffer
// --------------------------------

// Do the work ...
Log::SetLoggingSwitch(TRUE); // Switch logging on
Log::LogText('to be lost');
Log::ClearBuffer(); // erase all so far
Log::SetLoggingSwitch(FALSE); // switch logging off
Log::LogText('to be ignored');
Log::SetLoggingSwitch(TRUE); // switch back on
Log::LogText('Hello');
Log::LogText('World');
$hw1 = Log::GetBuffer(FALSE); // get log *don't clear*
Log::LogText('Again'); // append more
$hw2 = Log::GetBuffer(TRUE); // get log *clear buffer*
$mt = Log::GetBuffer(TRUE); // should be nothing

// ...report the results
print("<u>Hello World</u>
");
ListArray($hw1);
print("<u>Hello World Again</u>
");
ListArray($hw2);

Programming Version 0.4 Page 230 of 356

268 PHP pretends to be a web page; hence the HTML. <u>=underline
=New line
<i>=Italics

269 "Honestly! You computer programmers are always messing with silly remarks instead of
getting on with the job." Actually we want to flag mistakes to help avoiding them again.
Since in most cases formal documentation would be a burden and pretty useless (being
divorced from the code) a semi-humourous quip is the next best thing - because it breaks
up the pure logic and sticks in the mind.

270 For values of 'always'.

print("<u>Empty</u>
");
ListArray($mt);

?>
• That's nice and neat. Notice how we've been economical and logical.
• The presentation of the results should be self explanatory.268

• One objective of example code is for it to be read and understood from the page
without having to be run.

When we try to run this program the first time there will probably be bugs and blanks.
Because of the lack of trace features we might add temporary instrumentation to the
code for our own purposes.

Running the exerciser
After weeding the inevitable typing errors the screen reports a distressingly
uncompromising failure:

Hello World
No items in array
Hello World Again
No items in array
Empty
No items in array

Hooray! OK so it wasn't difficult to spot the 'nothing returned' bug in GetBuffer() but
nevertheless it's one less bug for users to find. So insert

return $rv; // Don't forget this next time! 269

• I had to do some trivial tidying of output formatting before being satisfied with the
layout. That's quite normal.

• If we were writing a test program just for ourselves we might not wait until the end
of all processing before displaying the results.

• If we're happy that we've exercised the routines we can clear the appropriate [E]s
from the code and move on to crash testing.

Proper testing
I've been referring to the two sorts of testing as 'Exercising' or 'Checking' and 'Crash
Testing' or just 'Testing'. The difference is that the Checking shows the code can work
while Testing proves it always works.270 (The exerciser program is called "Test..."
because that's what most users will consider most appropriate.)

Terminology confusion alert: Whilst we, in our development environment, know
testing to be 'a good thrashing (that might break it)' users think of testing as 'a good
example that will always work'. Hence the file naming conventions I've adopted.

Programming Version 0.4 Page 231 of 356

271 We're not interested in impossible situations but we may be interested in maliciously
contrived ones.

We have just seen that checking is relatively straightforward. If something gets left out
it doesn't really matter. Testing is different!
• It's bitty
• It may need extreme circumstances that are difficult to reproduce and/or very

unlikely.
• Some risks are very well hidden
For an example lets look at calling LogText(). What-if: (Comments in italics)
• There is no argument supplied? Possibly picked up by compiler (run-time)
• Two arguments are supplied? Probably picked up by compiler (run-time)
• The argument is a null string? Should be OK
• The argument is a simple type such as a floating point number?
• The argument is an object?
• The argument is an array?
• The argument is a function that returns a string?
• The arguments points to a null reference?
• The argument contains non-ASCII characters? Which byte codes might be

dangerous?
• The argument is Unicode text?
• The argument is 10,000 characters long? 10,001,10,002 ... etc!

Arghhhh! Definitely time to run away and hide. Clearly we can't actually test for every
single possibility. So what's the answer?
1 Reduce the number of possibilities with checking code in the routine
2 Convince ourselves that certain issues are not a problem

• By detailed knowledge and experience
• By logical deduction
• By experiment

3 Shrug off 'the sky falls in' and 'what do you expect if you do that' cases.

So far all we've done is listed some stimuli. What about the consequences, or more
importantly how our code deals with the consequences. This is the core of the matter:
Does the code deal with difficult situations?271

Back to the drawing board
If all we're prepared to accept as an argument for LogText() is a string then we can test
for that first-thing.

if not-a-string(arg) { substitute "not a string" for arg }
That's knocked out a lot of possibilities working their way into the delicate parts of our
code but we still need to be confident that this test logic actually works so we still need
to bowl some bouncers at the routine.

It is quite common to develop code without worrying too much about difficult
situations. Often you'll do argument checking as a matter of course but that may not
include all possibilities and rogue conditions. If you can be tight and confident with
your checking from the beginning that's a great help, but there may still be issues that

Programming Version 0.4 Page 232 of 356

272 It's quite natural to be thinking 'how can I get this code to work sensibly' at coding stage
which is a different mind-set from the 'what else might break it' tester's motto.

need somebody with malicious intent to deal with.272

ch14\prod\CrashTestClassLog.php
<?php
/*
 Crash test ClassLog
 ===================

 1 LogText
 1.1 Arguments

*/

// Always required
require_once('ClassLog.php');

// Maximum error reporting sensitivity
error_reporting(E_ALL);

$RED="";

function ListArray($AnArray){
Convenience function to list lines from an array
\n character becomes a
 for screen display purposes
global $RED; // (PHP : Access to variable outside function)
 if(count($AnArray)==0){
 print("<i>No items in array</i>
");
 }else{
 $lineNo = 0;
 foreach($AnArray as $t){
 $lineNo++;
 print("$RED <small>$lineNo</small>[tRED]
");
 }
 }
}

class DummyClass{
 function HW(){return "Hello World (Dummy)";}
}

// report heading
$d = date('D j M Y H:i:s');
print("<h1>Testing ClassLog.php</h1>$d<p>");

Log::SetLoggingSwitch(TRUE); // Switch logging on

// --------------------------------
// 1 Logtext()
// 1.1 Test abnormal arguments
// --------------------------------
// 1.1.1 Build array of test items
print("<h2>1.1.1</h2>");
$args = array();

Programming Version 0.4 Page 233 of 356

273 If you can direct real output to one place and reporting output somewhere else that's quite
handy also. All you need is a good trace utility...

$args['text']='Normal text';
$args['int']=567;
$args['float']=567.89;
$args['nul string']='';
$args['null']=null;
$args['boolean F']=FALSE;
$args['boolean T']=TRUE;
$args['object']=new DummyClass;
//$args['string function']= Too complicated @@@
$args['array']=array(1,2,3);
// nasty binary characters probably in the low values
// so do high ones first. Wrap with square brackets
// as delimiting indicators.
for($i=15;$i>=0;$i--){
 $binstring = '[';
 for($j=15;$j>=0;$j--){$binstring .= chr(($i*16)+$j);}
 $args["Binary string ($i)"]=$binstring . ']';
}
$longstring = "This will be a long string. ";
for($i=1;$i<=5;$i++){$longstring = $longstring . $longstring;}
$args['900 chars']="START".$longstring."END";
$args['text at end']='Normal text';

// 1.1.2 Run through array of possibilities
print("<h2>1.1.2</h2>");
foreach($args as $testName=>$testArg){
 print("
Test:$testName ");
 Log::LogText($testArg);
}
// 1.1.3 Report what's in the buffer
print("<h2>1.1.3</h2>");
ListArray(Log::GetBuffer(TRUE));
print("<p>$RED End of 1.1 $RED");

print("<p>$RED End of test $RED");

?>

You can see that this code looks quite different from the exercise test.
• More formal with a numbering system for reference
• ListArray() serves the same purpose but has been beefed-up.
• Additional bits and pieces we might need for testing and reporting.
• Proper report heading including timestamp
• Error reporting set to maximum sensitivity.

Setup - Do it - report pattern
It's quite handy, if possible, to split the setting-up from the execution. Remember that
the execution may well result in an awful crash... ...but the setting up of extreme
situations may be equally risky. We may be inserting temporary debugging code which
might upset a report273. Hence this three-way-split.

Programming Version 0.4 Page 234 of 356

274 It can sometimes be surprisingly difficult to make up three test records in a database off
the top of your head. Much easier to use real data... ...except using real data for
experiments and then possibly training materials and so on is not such a good idea either.

275 This is a case where you'd want to be quite specific with certain exception types.

• PHP gives us ready to use type-indifferent associative arrays which makes building
an array of oddities and nasties quite easy.

• It's quite a good idea to put the more unsavoury items towards the end of the test.
This gives you the confidence of reacting reasonably when normally stretched
before a moment-of-truth.

• Of course our test data is only a sample.
• In this case the tests are pretty much self-documenting... ...but see below.
• It is standard test procedure to re-run a 'good case' at the end which can be

compared with it when it was run at the beginning to confirm there hasn't been
any internal upset.

• 3 is a generally accepted starting place for the number of items in an array or times
to loop. If it works with three ('one at each end and one in the middle') then you've
probably dealt with all possibilities.274

Stop and ...? (1)
It happened that none of the tests executed in 1.1.2 caused a crash or warning. What
would we do if it did? There are four things we need to do:

1 Trap the exception
2 Report it
3 Flag was that good or bad, correct response or unexpected.
4 Continue after tidy-up if appropriate

To do this we need
1 Some of try...except code

Set was-exception-raised to false
try{ do some risky test }
except275 {
 Set was-exception-raised to true
 capture result and any details
 manage consequences
}

2 A way to tell if what's happened was what we hoped for

Some languages allow you to set up specialised error handler routines. That's getting a
bit deep for us here, but worth investigating to see where YCPL might be cleverly
adaptable. The advantage of writing your own is that you can switch it in just for your
development and at other times use the default or a user-friendly version.

Stop and ...? (2)
What would we like to do?

a Stop at error, report error, tidy up, shut down, or
b Log error, tidy up, continue, full report at end, or
c Some combination of a and b.

It's probably nice to have a test program that can be left to run then finally reports
PASS,PASS,FAIL,PASS etc with some pretty traffic lights but is it practical? Quite

Programming Version 0.4 Page 235 of 356

276 Test 6.6.6 : Try deleting all files with root permission. Result - Should be denied!

277 Most languages are more strongly typed where these issues are dealt with long before the
code is allowed to run so PHP is not typical in this respect.

278 And then: "I wonder if somebody has been this way and already done the job?"

probably for 90% of the tests, with others needing configuration alterations that are too
involved to trust to an automated system or are 'dead-ends' or too bizarre to bother with
as a standard test.276

Review of test program
In view of the Stop and ... sections above how does CrashTestClassLog.php look?
• So far we've got away without try...except but it probably won't last
• We have reported something which we can inspect...
• ... but we haven't judged the results except on the grounds of 'no crashing'.

Are we going to have to repeat the argument thrashing we've given LogText() with all
the other routines that need a string? Luckily the answer is no. What we're looking at
here most of the time is 'standard behaviour'. How long a string can be, what are
acceptable characters, what happens if we give a number etc. are characteristics of the
language.277 Out fluency with the language allows us to manage any limitations and
quirks as a matter of course. It's still a good idea to keep up the pressure with Gotchas -
you learn about these mostly by experience - embarrassing experience.

When you hear the phrase 'matter of course' that should make you stop and take note.
What the person who says it often means is 'Who cares? Life is short. Let's not bother
with boring details'. As a programmer you think: 'Looks like a case for a standard
checking procedure here'.278

As far as it goes we've got a neat little program that isn't too difficult understand and
won't be difficult to expand but is still at the 'poke-n-hope' stage. We are going to need
to either document what should happen "You should see this" might work fine as a 'go-
no go' test, but it still needs some documentation. The question is where should the
documentation go: (a)code itself (b)test code (c)test data? Probably a combination of
(b) and (c).

Improving the test program
Firstly it should be pointed out that there is always some danger of spending far more
time on a test program than the results justify. The ideal person to do testing is a
meticulous investigator and diligent documenter but there has to be a limit.

Are 1.1 results correct shortcut

HTML note: Here is the modified 1.1.2 code that adds little red sequence numbers.
If you're serious about reporting in HTML then you'll want to be investing in styles
and wrapping types of output in convenience formatting functions rather than the
sort of complication shown here.
// 1.1.2 Run through array of possibilities
print("<h2>1.1.2</h2>");
$testNo = 0;
foreach($args as $testName=>$testArg){
 $testNo++;
 print("
<small>REDtestNo</small> Test:$testName ");
 Log::LogText($testArg);
}

Programming Version 0.4 Page 236 of 356

We've numbered the listing in 1.1.3 if we add matching numbers to 1.1.2 (see how
handy those reference numbers are) we can match up test description tag with results.
In this particular case, because these are not the most vital tests, we might be allowed
to get away with this - clearly it isn't an ideal solution involving as it does cross
referencing the 1.1.3 list, the 1.1.2 list and the source of CrashTestClassLog. This still
doesn't tell us if what we're seeing in the results is acceptable.

Check for [T]s
So far our test has picked on one aspect of one routine. That's hardly comprehensive!
Luckily we've been making notes (in the code in this case) where there are items we
might want to test and marking them with easy to find [T]s. We'll ignore the file and
timestamp ones at the moment.
• if(self::$loggingEnabledFlag){ // master switch [T]

Does master switch ($loggingEnabledFlag) work in LogText()...
... and if it does, is testing here good enough to apply to similar cases?

We have exercised this in the check/exerciser(TestClassLog). Do we need to repeat
it here? Probably not, provided we make a note about what the exerciser should
do.

If this conditional test works here it should always work elsewhere. This is a big
statement to make. Sloppy, quick-n-dirty programming invalidates it. That's why
most of this book is about good programming practice, and developing style and
technique that makes such statements possible.

• $rv = self::$loggingArray; // [T] what if array is empty?
This is in GetBuffer(). The exerciser has a case of this where nothing went wrong.
Job done! Err... almost.

The exerciser calls GetBuffer() at the end of it's run. Everything worked as
expected. However the array is a data structure and as a general rule data
structures need initialisation. The question arises "how do we know the data
structure has been initialised". Often programmers defer initialising data
structures until they are needed. We could have written LogText() like:

if(not buffer-is-initialised){initialise buffer}
rest of LogText code

(As it is there's a static initialisation done for us but that's a bit of a fluke.) If
initialisation relied on making at least one call to LogText() and we never made
that call then we're in trouble.

So the [T] - What if empty has been dealt with by the exerciser but [T] - Sure
this is initialised needs either crash testing or logical proof. In this case we
have the logical proof because
 private static $loggingArray = array();
automatically does the initialisation for us. The proof comes from a combination of

Programming Version 0.4 Page 237 of 356

279 Who knows, in the next version of YCPL, or a variant of YCPL, certain features that you
relied on are changed. - Ouch! That's why most programmers explicitly initialise
everything.

280 The same applies to database data: Garbage in today...Garbage out next week.

code inspection with how the language works.279

If we were feeling verbose, instead of just removing the [T] comment we'd replace it
with // (Statically initialised).

• We've duplicated the "does master switch work" [T] in SetLoggingSwitch(). It's
difficult to think of anything more to be done.

Method arguments
We gave LogText() a good thrashing. What about the other methods? It so happens
that although PHP, unlike many other languages, accept anything as arguments it is
good at not getting hung-up about silly type conversions. So are we off the hook with
GetBuffer() - yes SetLoggingSwitch() - no!

Here's the current code for SetLoggingSwitch():
 #---
 public static function SetLoggingSwitch($OnOff){
 # This method is a 'master switch' that enables or disables [E][T]
 # all logging. IMPORTANT : The default is OFF([D] FAQ?)
 # $OnOff is a boolean
 #---
 self::$loggingEnabledFlag=$OnOff;
 }
In GetBuffer() we only use the $Flush argument for a test to see if it 'is true'. But in
SetLoggingSwitch() we store the $OnOff argument. Later on it will still be used for an
'is true' test but now we're going a bit too far. Suppose the $OnOff argument was
something large or stupid. In the first case we're lumbered with carrying somebody
else's rubbish and in the second, if there is a problem with evaluating 'is true' we won't
find out about it until we come to use it by which time we'll have a job on our hands
finding out what's gone pear shaped.280 So the good practice rule is never store
unvalidated arguments in fields (even if there's no risk to the program logic.)

So let's rewrite the SetLoggingSwitch() method:
 public static function SetLoggingSwitch($OnOff){
 self::$loggingEnabledFlag = ($OnOff==TRUE);
 }
Now we are guaranteed a boolean value in $loggingEnabledFlag.

Scripts
This is getting a bit beyond the scope of this book, but I'm sure you can see that with
our test program we're only an ace away from the stage where we could read in a file
with test commands, data and correct results which would then be executed and the
actual results compared with those in the file to look for discrepancies. Bearing in mind
that all we're doing with our code is checking some logic and that many programs have
to work in real time, under stress, with simulated interactions, with thousands of

Programming Version 0.4 Page 238 of 356

281 Also there are some things left as 'understood'. When we say "The house will be painted"
we probably mean the window frames but not the glass in them.

possible variations and combinations of user input this degree of automation is very
appealing.

Specification
I've mentioned before that specifications should be taken as guides. The blueprint says
"To be painted" and it's up to you as completion draws near to find out what colour the
client wants.281 When you come to crash testing you will want to explore the
implications of the specification. A typical case is where an "integer" is called for. Does
that include negative numbers, zero or 500 million? Most of the time you'll make a
sensible decision in the early days of coding but what about testing - when you've got
to slightly rewrite the spec? There are two more big holes in specifications:
• Dates - Not only different layouts

but possibly 'June', not June in any
year or any particular day in June.

• "...takes one integer argument...."
might mean "most of the time use
the integer provided but there may
be occasions when data isn't
available - please work some sort
of miracle"

So when creating test data you need to look at the specification with your WCPGW
glasses on.

Review - More testing
A lot of what we've just looked at has been about getting quality built-in to the original
code...
• Logical proof by inspection
• Argument checking
• Keeping strict control over 'our' variables
...Which are matters we should be dealing with at coding time. (Can you see the
importance of being able to focus on a small section of code in order to have these
matters at the forefront of your mind when writing final code?)

When we started looking at [T]s we were on-a-roll with the crash test program, but as it
turned out we were able to convince ourselves that the code was reliable by inspection.
Inspection is only a partial answer, it tends to be better at showing why things can't go
wrong than why they must go right, so exercising and crash testing are still required.

Finishing off
From where we're at currently we'd look
at coding to production standard,
exercising and testing the timestamp

There are whoppers in specifications also.
Unrealistic performance promised once
and never checked; or quantities of data
that are pure guesswork but held with
religious conviction to be unquestionable
fact.

It all come down to the human skill of WCPGW being assisted by a combination of
different tools.

It seems to be taking a long time but really
this is because we're discussing it. When
you have done it a few times, and know
where each of your tools is, you can rattle
through.

Programming Version 0.4 Page 239 of 356

282 I'd like a pound for every download that was missing important files or wouldn't install
properly. If I can't get it to work out of the box then that tells me all I need to know about
the quality of the programming. Life is too short for debugging other people's
applications.

third and file handling third of the source code. Then we'd move to the other two
classes in their turn.

User documentation
We've talked about documentation already. In this example we have decided the API
will be the bulk with an introduction backed with TestClassLog. There shouldn't be
much for us to do...
...But we did put some [D] markers in the code that we ought to clear up. For example
in SetLoggingSwitch() we underlined the issue of the user not getting any logging
because it isn't switched on. If we had a FAQ section this would be a candidate issue
but in this case we could just highlight it either in a box or in the introduction with a
four line get-you-started example:

include('ClassLog.php);
Log::SetLoggingSwitch(TRUE); // *IMPORTANT*
Log::LogText('Hello Log');
print_r(Log::GetBuffer());

The shorter, simpler and more reliable the get-you-started section is the better.

Development documentation
Your working notes are none of my business. You should have seen all the Todos and
'Don't forgets' crossed off and vanish. You may have used your notepad for listing
working files so that it becomes an index to the files in the project. It's up to you how
you go about recording further development.

One of the tidying up matters is to clarify the status of source code files. Do this in a
way that is recognised by the automatic documentation tools. In this case we'd replace
the status comment in the header with something like:

Version 1.0 : First release 12 May 2006

Release
It's that exciting time when the code is about to be officially released. It may be late or
you may be tired of the whole thing and can't wait to get onto something more
interesting... ...Conditions are ideal for fatal bugs to slip in.
• Don't add finishing touches to the code without

(a) Exercising and Testing
(b) Ensuring documentation has been changed to match.

• When building a distribution package
• Have a specification for the contents
• Preferably have an automated method of building the package
• Test the distribution and it's documentation.282 This is surprisingly difficult to

do because for a start you need some virgin systems and virgin volunteer
clients to have a go in order to highlight the problem areas.

Code management
Just when you thought your filing system was tidy and you've got all your tools tweaked

Programming Version 0.4 Page 240 of 356

283 make works out what needs doing as a result of changes. Then it calls other programs as
required but it's up to you to provide and configure those programs. If you can't find a
suitable 'handle the consequences of changing a bit of source code' program then write
one. It's one less thing to think about if you can type "rebuild myproject" knowing that all
the dependencies will be followed through and any loose ends highlighted.

284 If suitably adapted you can use this structured approach for almost anything from writing
tutorials to procedure manuals - anything where methods need checking, testing and
explaining.

to fetch the right bits with a couple of keystrokes you need to start on another version
with added Foo and extra Bar. Version N+1 can't be indiscriminately mixed with
version N because (apart from other reasons) N+1 is at the development stage. That's
just one scenario. There are all sorts of reasons why all of version 1 needs to be frozen.
For example a new version of YCPL appears which your users may start to use. Does
everything work as before? Who knows? How will you find out yet still have a master
version of your original YCPL which other customers will continue to be use?

Many people find that a good filing system is sufficient but the more people are
involved the more you need well understood and observed procedures and automated
tools for spotting actual and possible dependencies between application elements and
also to find the correct version of a file to work on in a particular case.

We've touched on the program make (and variants called something-ake) which could
for example automatically regenerate API documentation from source if a source file
was modified and could then automatically rebuild the distribution package.283
Everyone, including the one-man programmer, needs to know about principles of *ake
even if they don't use it often.

Review
Up until this chapter we've been concentrating on developing your mental abilities to
see how your code works in it's environment. Even when designing programs we were
exploring how the world works so we could arrange our programming forces to suit.

In this chapter, possibly as important as all the others put together, we've seen the how
a development method can be applied to deliver high quality code.284

Here's the basic method in a nutshell. In this chapter we've concentrated on items 3,4
and 5. It's very important to recognise the change in working pattern at the end of
stage 3. Until then we were creatively sketching in the drawing office. From then we're
getting our hands dirty on the factory floor, operating machinery, testing and
assembling components to produce a finished product.

1 Understand the design brief - explore the boundaries
2 Design top down and bottom up
3 Clarify your production blueprint

• Overall structure
• Prototype and proof of concept
• Package of deliverables

Programming Version 0.4 Page 241 of 356

4 Tool-up
5 Production

• Pre-production review
• Code in segments
• Exercise segments
• Test segments
• Keep documentation in step
• Release

6 Post-release activities (To be discussed)

If you've learnt anything by now it is to interpret such lists not to follow them with
robotic precision.

Issues
• You won't learn the art of testing in a fortnight!
• The fact that until the end of stage 3 you can't really say how much time and effort

will be required to produce the finished result doesn't stop people insisting on a
fixed price before letting you get on with stage 1! The same applies to feasibility
and additional resources required to run the application.

• There's always the temptation to skip on the testing and exercising. OK so it
doubles the effort required in producing production code, but that's the price of
quality.

Benefits
• At any stage you have a plan of work. You can see where you are and it's clear

what's next on the list of things to do. This is a great aid to rationally planning your
efforts and getting others to coordinate theirs.

• You can focus on particular matters without having to deal with broad issues and
nitty-gritty code matters at the same time....

• ...In particular you can get stuck into hours of 'head-down' programming.

HDP is a transcendental state only known to Real
Programmers. All the interesting challenges evolve from
the program-in-progress without having to put up with
blunt tools or distractions.

It is both intensely satisfying and draining. Fitness is
required - but after a good session you'll feel like a god as
you look down on ordinary mortals.

Programming Version 0.4 Page 242 of 356

285 All these beers are lovely and available in the best Maldon pubs.

15. Serving
The last chapter was a tour-de-force of organisation and skill. There was nothing very
'difficult' or technical, simply applying brain-power in a logical and persistent manner.

Now we'll look at some common concepts worthy of discussion that are part of a
programmer's stock in trade.

Protocols

We've been dealing with functions and methods of objects where there's a simple cause
and effect involving one 'black box'. Protocols involve 'conversations' between black
boxes. Not only is there a 'language' of interchange but also rules about the correct
sequence and options.

Try writing 'buying a pint of beer' in Beginner and you'll get twisted into knots because
there are two actors while Beginner is a procedure list for one. Here's a possible
sequence of messages making a complete transaction:

(Publican-P is waiting for next customer-C)
C to P : Do you sell beer?
P to C : Yes
P to C : Are over 18?
C to P : Yes I'm over 18
C to P : What beers do you sell?
P to C : Nelson's Blood, Pucks Folly, Sweet Farmer's Ale, Hotel Porter
C to P : I'll have a pint of Maldon Gold 285

P to C : Sorry. Please select from the list.
C to P : I'll have a pint of Hotel Porter (in a jug if possible)
P to C : [Puts glass of beer on counter] £2.40 please
C to P : [Hands over £5 note]
P to C : [Gives £2.60 change]
C top P : Thank you [Takes glass of beer]
(Publican is now ready for next customer)

That certainly looks different from anything we've seen so far.
• Messages have a definite direction.
• The state of the publican is indicated at the beginning and end. In this protocol

the publican's state is important; for example checking someone is old enough to
be served alcohol needs to be done before pouring the beer. That is some
messages are only appropriate at certain times. Stateless protocols (HTTP is an
example) don't keep a record of state and so all messages are always acceptable.

Procedures and protocols are very different.

Programming Version 0.4 Page 243 of 356

• From a lifetime of study I can tell you there could be lots of other transactions. For
example:
(Publican-P is waiting for next customer-C)
C to P : Pint of your strongest beer
P to C : Are over 18?
C to P : Yes I'm over 18
P to C : I don't believe you. Go elsewhere.
(Publican is now ready for next customer)
Typically a protocol will follow certain patterns but not a single rigid course.

• You'll often come across negotiation where the parties discuss what they can offer
and what they prefer to arrive at a compromise if one is possible. In our example
the list of beers is offered and the customer makes a choice.

• A good protocol has ways of dealing with confusion. What would happen if the
customer keeps asking for a beer that isn't available while the publican kept up the
same response? You have to be sharp about WCPGW because others aren't or
they're using an older version of the protocol which doesn't support some feature.
(You also have to be on guard for messages with malicious intent or side effects.
Consider:

C to P : (And a) gin and tonic please
P to C : Ice and lemon?
C to P : Err.. Hold on I'll just find out

At which point C leaves but P can't serve anybody else. Result: Denial of service.)

Standards and libraries
The first thing to remember about protocols is they must be documented so that both
actors 'speak the same language' and adhere to the same rules. So you should be able
to track down the information you require to implement your bit, and to understand the
limitations. For example HTTP is firmly one-client-request-returns-one-reply so you
can't ask for an update to a bit of a page like you might do for a native application.

The second thing to remember is that many protocol definitions incorporate optional
items, obsolete items and new items that may not yet be implemented by all the
programs you might be conversing with. Also many implementations are either not
precise, miss bits out or add extras. Expect some surprises when testing against other
implementations.

Fortunately the popular protocols have already had libraries written for them, many
times over. Unless you have special needs or you're not too happy about being locked
into a fossilised library then save your efforts for dealing with your program and use off-
the-shelf routines. You still need to read the protocol documentation to understand
what it's all about.

If you have to write your own routines for a protocol then you'll almost certainly need to
use separate threads and be very careful about your design. If possible look at the
techniques others have used for this protocol and research methods people use for
protocols in general.

Think protocol!

Programming Version 0.4 Page 244 of 356

286 Except perhaps monosyllabic teenagers and those who learn their transaction skills from
the TV.

287 There has been a huge amount of research into game theory (we're talking about
computers playing humans and each other here - not shoot-em up) which has done a lot to
encourage research into AI (Artificial intelligence). The object is to look behind the
mechanics of transactions to strategic 'thinking'. For example in practice a publican rarely
asks "are you 18?" they remember or make an assessment on looks or don't care (or a
combination.)

Humans are superlative at transactions286. We can negotiate the purchase of a pint of
beer quite easily. Machines can go through the motions, use rules, even learn, but a
huge amount of research then detailed work is needed to design and build working
protocols for matters that humans find mundane. The question you may be asking is
why should I be urging you to 'think protocol'? The answer is in the first sentence:
We've learned to be good at flexible negotiation because it is an extremely valuable
skill. It stands to reason that either for program to program communication or human
to program communication we will benefit by thinking about "shall I offer Foo now" and
"shall I accept Bar now".287

You might think of your Thermometer class having a protocol of:
Initialise(0)
0a Ask : Please get ready (Method call)

Reply : Status and version message (Method response)
Setup mode(1)
1a Ask : Which port to monitor. (Method call)

Reply : Port has a thermo probe attached or not (Method resp.)
1b Tell : Units to use (F or C) (Method call)

Reply : Acknowledge (Method response)
1c Ask : Calibrate port probe to given value (Method call)

Reply : Error or probe model number (Method response)
1d Ask : Switch to run mode (Method call)

Reply : Number of operational ports...
 ... or zero and stay in setup mode (Method response)

Run mode(2)
2a Ask : Current temp on given port (Method call)

Reply : Reading (Method response)
2b Ask : Max,Min,Average temp on given port (Method call)

Reply : Readings (Method response)
2c Tell : Reset Max,Min,Average on port (Method call)

Reply : Acknowledge (Method response)
2d Tell : Switch to setup mode (Method call)

Reply : Status message and number of operational ports
This protocol is described here in terms of software calls but might be a dressed-up
implementation of a protocol defined by a semiconductor manufacturer which describes
the electrical signals required to operate a temperature controller chip.

This is more than the APIs you've already come across that describe what each method
does - it explains how to use them together in order that the calling actor can achieve
its goals. It's the difference between telling you what the clutch pedal and the gear
lever do in terms of mechanical action and telling you to press the clutch - change gear

Programming Version 0.4 Page 245 of 356

288 Technical people tend to suffer from trying to explain things in technical 'how it works'
terms rather than 'what it does' using concepts familiar to the user. (Further compounded
by listing features rather than benefits.)

289 By the way it can be very efficient to bash in "567" from the main menu and arrive exactly
where you want to be - but only if you're a hardened user of this particular application.
Then some dippy programmer inserts a new menu option and the magic number changes.

then release the clutch so you can drive faster or slower.288

User interface
When we need information from a user we typically ask them a series of questions. We
might check these as we go and switch the direction of our questioning as we find out
more about them. Or we might present them with a single large form to submit which
we check, asking them to correct errors until it is right. You have seen hundreds. What
about when some of the required information is already available? What about when
that 'already known' information may be wrong, mostly correct or completely correct?
What about when the user expects the computer to 'know' the details but for one reason
or another is forced to do a lot of input, or is disconcerted that 'the system knows I exist
but it can't find me'. You see - we (the computer via the program developer) are
interacting and need to appear to have some intelligence. The classic case is where
Jim Davies types in his name but it can't be found on the database because not only is
it recorded surname-initials but also misspelt as Davis,J. (So Davis,Jim might not
work either.)

So as well as the trick of being flexible enough to use message variations we need to be
clear what the objectives of the parties are (NB possibly malicious) and their likely
strategy. The traditional approach is to force the user to conform to the strictly limited
and sequential demand of the computer. It's no so long ago that you'd be asked to type
the number of a menu item rather than the initial letter or use a pointer.289

"Hey yes of course - the mouse!" what a flexible method of input that is. Flexible but a
total dead loss if you want people to operate a typical business interface quickly. Our
county library has just installed new software which requires the mouse to operate. So
the librarian takes your book, puts it down to wiggle the mouse, picks it up to scan it,
puts it down to wiggle the mouse, picks it up to stamp it, puts it down to confirm issue
then picks it up to hand across. (And I haven't mentioned scanning the reader card!)
Whoever designed this system either didn't know or didn't bother about the key to
protocols:

Separate the objectives from the method so you can accommodate
different ways of interacting according to circumstance.

• At all stages make it clear what the current objective(s) are. For example Where
shall we send this order to? How simple is that? Delivery address is
normally an acceptable shorthand but Address is too cryptic and doesn't carry the
idea of 'tell me this so I can help you'. This is important when you're offering a user
choices or are trying to get them to follow a formal procedure. 'It might be a bit of a
bore but at least we're getting somewhere'. The same applies to an API which
requires specific initialisation. Your code is doing 'things inside' but somewhere in

Programming Version 0.4 Page 246 of 356

290 And what might happen if they don't follow the protocol. (That's a [T] then!)

291 When you think about it there is no reason for a computerised system not to put the totals
at the top with a breakdown underneath.

the documentation you have to explain what the purpose of initialisation is to the
user.290

• With program to program (or object to object) interfaces you can usually be
restrictive, in the name of being concise and precise, although you often provide
options for those that want bells and whistles.

• With an API you're often strict but allow a degree of polymorphism. For example
your thermometer object might accept temperatures as numbers moderated by a
previously set C/F flag or a string such as "15C" or "53 f". (Or even "15c+-2" for a
range.)

• As we discussed many chapters ago when looking at user interfaces, we saw that
sometimes it is a really good idea to have a step by step 'wizard' to work through a
number of objectives. That's a protocol: 'Give me the order, (OK then) give me the
authority, (OK then) give me the delivery address, (OK then) give me contact
details'.

• It is now common practice to allow people to click, tab, and use shortcut keys to do
the same thing. That's being flexible for the sake of 'usability'.

This is the tip of an important iceberg: Generally it is recognised to be a
good thing to separate display and user interactions from the application's
underlying activities. To give a trivial example: Suppose on a screen we
have an input box for a telephone number. Should the amount of space
we've left ourselves on the screen dictate the number of characters
allowed? - Should the fact that we've allocated 10 characters in the
database be allowed to limit the number? No. We've put the phone
number into the system for 'business' reasons so if 10 characters isn't
enough then that means the database must be adjusted and some fudge
may be needed on the display. We'll look a bit more at this three-tier-
architecture later.

• Printed reports and correspondence rely a great deal on protocols that could be
more accurately be described as conventions. For example totals come at the
bottom of columns291 while English addresses have house number before the street
name - German the other way round. Use the Hot-Tap/Cold-Tap¤ principle to your
advantage.

I continue to be appalled at the awful design of bank statements and utility bills.
Important information is hidden on corners, in small print or amongst other data.
Why? There is no excuse for this except programmers who threw a bunch of fields
at a page without considering properly how people would use the information.

Programming Version 0.4 Page 247 of 356

Review
A procedure is simply a mechanism. A protocol is a way of using mechanisms. That
implies a 'user' with objectives.

Protocols tend to go through various states although stateless protocols are a good trick
if you can do them. Plotting these states is an art, but one well worth working at
whenever the opportunity arises because after a while you'll naturally be thinking 'what
happens when' which is pretty central to good programming.

The other reason for looking at the world in protocol-tinted glasses is that you are
continuously aware of the fascinating myriad of interactions being played out between
all living things: How seriously worried does somebody have to be before going to the
doctor and what governs that? How does a doctor allocates resources and persuade the
patient to follow their plan? How well does the health service communicate as a
whole? These are real life issues which everybody feels competent to deal with
because of their 'naturalness' but in fact is no qualification at all - Just look at the
results! As a Real programmer you'll be involved with making programs that help
people step through phases, often writing piggy-in-the-middle programs between
parties who in 'the old days' would have met face to face or employed staff to do the
communicating and negotiating for them.

If you want to see how protocols are documented, explained, work and evolve then have
a look at the SSL (Now TSL) protocol which is relatively simple but illustrates well the
issues of negotiation that are quite common to initial establishment of trustworthy
communications.

Recall a while back when we were looking at design we usefully took two views of a
system the How and the What? In that case we used those two words to signify "how
does it work" and "What does it do". In the case of protocols the What part is the same
but the How part is "How do I get it to do what I want it to do", that is a user-based
view.

Client-Server
I don't think you need much telling what a client-server architecture is. A server
provides a service to one or more clients. They communicate via some protocol. The
server waits for clients to contact it, services the client's requests then goes back to
idling or looking after other clients. Classic examples are FTP, DNS, web servers and
database servers.

Database example
Let's look at two ways of accessing a database: As you know the data are at the end of
it just files. For a single program to update the 20th record of file foo.dat it needs to call
some functions which tell it where to look and do the actual reading, do whatever
alterations are required then call more functions to write back the record. You can
imagine the sorts of functions: LookUpTableParameters(), ReadNthRecord(),
WriteNthRecord(), LockNthRecord() and UnLockNthRecord().
• These functions and many others in full detail need to be compiled into the end-

user program.

Programming Version 0.4 Page 248 of 356

292 "Meta-" means "about". So meta-data is data about data such as file formats and which
records are locked.

293 Or exceptionally, Unicode.

• Every access requires refreshing everything we need to know about the database -
because some other program may have been working on the data at a the same
time.

• When we need to lock a record it means getting shared access to a lock file.
• If there's a problem with one of the locked transactions from one of the applications

and the lock gets set on a record but never gets unset, there is no 'hand of God' to
clear the blockage.

These issues give a flavour of the problems with free-for-all, snouts-in-the-trough
access.

The client-server solution uses a server program that talks to clients so that the end-
user programs never call functions that manipulate data and meta-data.292 Instead the
end-user-program calls server access functions such as ConnectToServer(),
DoDatabaseQuery() and GiveMeNextRecordInResultSet().
• You'll see these functions are at a higher level. The nitty-gritty work goes on inside

the server. (This makes it a great deal easier to maintain the code.)
• There is no need to keep re-reading shared information about the state of the

database. The server knows these things and will probably be keeping them in
memory.

• The server is in complete control of locks. If a client 'dies' then it can release any
frozen locks.

• When data management operations are to be performed the server is in complete
control of interleaving conflicting operations and allocating priorities.

There are plenty more reasons why the client-server architecture suits multi-user
databases.

Communication
C/S depends on some channel of communication which requires both ends of the
channel to 'talk' the same data-level protocol ('take these bytes') and the same-
information-level protocol ('this is what I want you to do'). Until relatively recently this
was a tall order. Nowadays we all talk IP, all use ASCII293, and all have reliable
implementations of standard protocols in the form of off the shelf libraries and ready to
use clients. Also modern languages are much more 'network and stream friendly'.

For example I can type in an IP address into my web browser to look at a web cam to
get pictures, take snapshots and control it. That's a lot of function for very little effort -
all provided by layers of standard protocols enabling me to be the client to the web
cam's server.

Everything client-server?
One of the great thing about communicating applications is that you can stretch the
communications link - either a long way to where the resource is located, or moved to a
more suitable machine in a cluster or even on the same machine as the client. Suppose
you were measuring temperatures as in the protocol example above. In a lab, where

Programming Version 0.4 Page 249 of 356

294 NB You will be doing a really good job of testing this won't you? Or expect to be sent up
to the top of a mountain if your quality assurance isn't quite what it ought to be.

295 Any fool can list "what we know" but it takes skill to uncover missing links. "There are
some serious uncertainties here" might be terribly badly received by the project's gung-ho
promoters. Fine! - If there's no problem they won't mind you doubling your overtime rate
as it will never be necessary will it? (PS Get it in writing.)

the computer is next to the items being measured, it might be convenient to use the
embedded-library-of-of-functions model, but what about a production line or
communications equipment cabinet on the top of a mountain? You already have the
pattern of the protocol - if only you added a communications layer and a bit of
management software to make your program into a server it is now infinitely more
useful due to it's remote capabilities without losing any of its local utility.294

It's worth looking at how you'd implement this in a bit more detail because it raises
interesting programming issues.

Server Problem identification exercise
Assuming you've got the API/protocol as given above which provide the How for the
server, and assuming any simple protocol for communicating with the client, what's
stopping you writing a server right now?

PROBLEM_IDENTIFICATION_EXERCISE
0. With hypothetical thermometer protocol
1. Sketch the key messages of a client protocol
2. Sketch management functions
3. How will your program 'connect' with client?
3.1 At data transfer level
3.2 At information exchange level
4. How will your program service multiple clients?

I hope you found that an interesting exercise in pre-design discovery of unknown
territory.295 It looks like there'll be some prototyping going on as soon as we've
discovered the techniques to use.

1 Client protocol
You shouldn't have had much problem with this. There's not much more to do than
repackage the methods of the thermometer class. However the form this repackaging
takes depends on the information-level protocol. One possibility is to take the web-cam
approach and implement a micro web server with bastardised features. We might do
this if we were building a weather station. Another
possibility is to use a 'remote command line'.
Simply accept text messages such as 1A
4(newline) and reply with 1A PORT 4 IS
READY(newline) or 1A PORT 4 NOT RESPONDING.

The Telnet protocol is
specified in "RFC 854" RFCs
are one of the series of
standards documents for the
internet. These are freely
available on the net.
•2616 is HTTP
•822 is email address
specification

Programming Version 0.4 Page 250 of 356

296 Not entirely accurately.

This is sometimes called the Telnet protocol296. It's very easy to implement, debug, log
and exercise by hand. Furthermore ready made clients and libraries abound. Perhaps
instead of 1A we might use a command word such as MONITOR but that's cosmetic. (In
the following discussion we'll assume we'll be using Telnet.)

2 Management functions
• Firstly, how will the server start when it's in an unattended cabin up a mountain?

Will being added to the list of boot-up applications work in all circumstances?
Possibly, but what if the attached equipment needs 5 minutes to stabilise after a
power supply interruption? (I mention this because the real world is often lying in
wait - So this looks like a [T].)

• Do we need a remote reset capability? Possibly yes. In which case do we need an
administrator's password?

• Should we be logging data in case communications are interrupted? Perhaps this
is a feature we could add later. Should we be logging usage, users and errors? If
so what controls and restrictions should there be?

• Should the server have an alarm capability? Normally a server is passive, waiting
for clients to contact it, but is that going to be good enough in the case of fault
conditions? Perhaps it could send an email to a service desk or a pager. (In this
particular case perhaps we could usefully add an overheating alarm. How much
trouble would that be in the scheme of things?)

• Are there any diagnostic modes that might help remote fault finding?
There are lots of ideas here. Although we could be accused of feature-itis, two points
are worth making:

• The marginal cost of providing features might be very small
• Most servers will have a practical identical set of issues.

3.1.1 Listening for connections
Ah umm... How does YCPL directly connect to the Internet? This varies from the easy
and fully integrated (for example Java) to the impossible (for example Javascript) with
most of those that are capable using add-on libraries.

Without going into details, when one computer wants to talk to another using the IP
protocol it fires a 'speak to me' message to the IP address of the remote computer with a
port number added on. (The port bit is like asking for a specific department of a large
organisation.) Some port numbers are standard, for example web servers will be found
on port 80. The server has to listen on the specified port. The next stage is to establish
a conversation with the client. This conversation is called a socket. Multiple sockets
can exist on a single port just as letters from more than one sender can be placed in the
same pigeonhole.

Pseudo code:
Initialisation
loop(until some stop condition){
 if(incoming connection on specified port){

Programming Version 0.4 Page 251 of 356

297 This works because the overflow bytes can be crafted to replace binary code in nearby
memory thus allowing a remote system to alter your program. This is a very common
method of attack.

 create a new socket from this connection
 ... use this socket for commands and responses
 }
}
Tidy up

If we implement this code without threads then we can only accommodate a single
client at a time. See below.

3.1.2 Send and receive bytes
There are two main ways of getting bytes to and from a socket.
1 Your code and the socket share a block of memory as a buffer. Typically your

program is responsible for reserving and releasing the buffer memory. Your code
puts what it want's to send in to the buffer then tells the socket where the buffer
starts and how many bytes are to be taken. When receiving bytes you similarly tell
the socket where to put any data it receives and how much so you can fish it out.
WCPGW is of course that more data arrives than you have allocated space for
resulting in buffer overflow. Not only is buffer overflow going to lose your data but
it can also be used to corrupt your program code in malicious ways.297

2 Streams are implementations of a stream of bytes. The underlying logical model is
a queue with bytes being added at one end while being taken from the other.
Typically a stream with complex capabilities will wrap a less complex stream
which will in turn wrap a simpler stream. The stream concept may be used to
wrap a physical device or memory buffer.

A stream should already be protected against buffer overflow and will have ready
to use methods such as Write...ToStream(), AnythingWaitingToBeRead(),
Read...FromStream().

Unless there are special reasons, a stream is a simpler and safer bet than a buffer.

3.2.1 reading messages
Part 2 should have given us the method to acquire lines of text. Now we have to do
something with those lines. For the purposes of this exercise we'll use the incoming
command format of :-

digit letter whitespace optional_parameter (newline)
For example 1b C or 2a 1 or 2d.
Which brings us to the common programming task of parsing to split the command into
tokens, and the related tasks of validating this sort of input and action on it.

The most straightforward method of parsing is to split the text up into sections using
some marker, often whitespace¤ or a comma, but possibly a great deal more complex, if
matching brackets, nested elements and optional elements are involved. Quite a
common format to parse is Foo = Bar or Foo: Bar where Foo is a key and bar is some
value. You can see this pattern appearing above where whitespace is used as the end-

Programming Version 0.4 Page 252 of 356

298 See glossary for WCPGW with CSV¤ files.

299 There are whole languages based on parsing. And you thought regular expressions were
incomprehensible! Unfortunately you need to have some grasp of regular expression
methods and syntax.

300 Decoded: Must be at start of line - Catch 0,1 or 2 - Catch character a - Skip one or more
non-word characters - Catch one or more word characters - ignore case.

of-key marker.

There are three ways to go about parsing, none of which are quite as simple as you first
hope.
1 Hand crafted code for string manipulation.

Find whitespace
if (no whitespace) {key=whole line, argument=nil}
else {key=bit before whitespace, argument=bit after}
Parse key into number-letter and validate
Validate argument

2 Use a tokeniser to give you one syntactical element at a time. A tokeniser is a
handy way of being given the 'next bit' of the line. This works well when a lot of
similar tokens are split by the same delimiter such as for example words of text
split by spaces or data values split by commas.298

3 Use pattern matching such as regular expressions.299 The following two lines of
Javascript illustrate this.

regExpn=/^([012])([abcd])\W+(\w+)/i;300

arrayOfBits = regExpn.exec("1A 4"); //->1,A,4
Pattern matching gets very complex and tricky and there are variations and
extensions. However if you can write a bullet-proof pattern (Not easy! [T],[T] and
more [T]) the murky details of decoding can be left to the machine.

Advantage : Ready made patterns for validating and parsing standard items such
as email addresses, URLs, and phone numbers are easily available in the public
domain. There is some hope that most of the bugs will have been detected by
quantity of use.

Disadvantage : The parsing either works or it doesn't. This can make it difficult to
give informative error messages.

Once the elements have been extracted from the incoming message they can be
validated. Often validation depends on context so it may not be possible in the first
instance to get much beyond 'could this token appear here'. In our example we will
only accept 2n... messages in mode 2 so that means we can't fully validate without
that bit of context being provided.

3.2.2 formatting messages
We could return temperatures in roman numerals but perhaps there are better ways. In
this case simply formatting the number say with a sign, three digits a decimal point
and a single digit to look like for example +056.7 would be straightforward and in a

Programming Version 0.4 Page 253 of 356

301 Providing threads are easy to use in YCPL

302 Father Christmas and his elves from chapter @@@ all over again.

format that humans and machines could easily read.

Formatting is a lot easier than parsing, most languages have formatting functions built-
in or easily available. Reporting, particularly aligning decimals, and web page display
require special additional techniques which involve a good understanding of the
mechanism used to produce the images and then encapsulating those in easy to use
standard functions.

4 Multiple clients
The pseudo code in 3.1.1 would work providing only one client at a time was to be
serviced. Why accept that limitation if we don't have to? For a small amount of extra
effort301 we can bud-off each socket in it's own thread to form the basis of a session per
client.

Pseudo code:
Initialisation
loop(until some stop condition){
 if(incoming connection on specified port){
 create a new socket from this connection
 create a new session based on this socket
 add new session to list of sessions
 start new session in its own thread // which immediately
 } // returns to here so we continue listening
}
Tidy up

Hey presto! A mother 'listening' program with child 'session' programs302. There are
some wrinkles to be dealt with such as what is acceptable in a multi-user environment
and how to manage what's unacceptable. In our example possibly mode 0 and 1 should
require administrator privilege which means we need another "can I be administrator"
message in the protocol. Or we block 0 and 1 modes unless there is only a single client
at the time? Whatever we chose there will be some server-related state to be shared
amongst session-related state. ie Class variables.

Review
The techniques discussed above are fundamental to servers and much more besides,
and for that reason I recommend you set aside a couple of hours to have a go at the
simple server exercise in the appendix. @@@??? That time will pay-back handsomely.

Although, because it is too varied a subject, we haven't looked in detail at formatting
output you can see that there's two sides to a communication. If you can define a
simple set of easy to interpret messages then you make it easy for both sides of the
communication to be programmed.

Programming Version 0.4 Page 254 of 356

303 Some languages allow you to run operating system commands via a simple function. This
may be termed accessing the shell or shelling-out.

We glossed over the issue of how to handle tokenised input. There's no big mystery the
collected tokens are passed to a function that takes the appropriate actions after
validating in context and taking precautions against malicious input. The obvious
method is to use a switch (aka. case) control structure along the lines of

switch(commandWord){
case "RESET" : DoReset(); break;
case "LIST" : DoList(); break;
case "SELECT" : DoSelect(argument); break;
. . .
}

But hey! Why not keep a list of functions indexed by command word then we've got a
flexible way of calling them and perhaps switching them according to real-time, real-
world environment. (For example initialisation might discover that the hardware
attached to our server is a particular type and needs to use a particular set of functions.
The application as delivered contains functions for all known hardware but adapts as
required.)

ix = arrayOfFuncs.IndexOf(commandWord);
func = arrayOfFuncs(ix);
ExecuteFunction(func,argument);

Many languages allow you to treat functions like any other type and execute them at
will by name. Have a look in YCPL's documents as this feature is often buried.

But hey! The language environment itself keeps track of function names so you may
well ne able to simplify everything to:

ExecuteFunctionByName(commandWord,argument);
WCPGW? What if commandWord was say doOpSysCmd 303 with argument of delete
.?
It's not much good realising this huge hole after an unfortunate event. You wouldn't
want to install software with this capability even if it was 'theoretically' not possible to
use it. Not everyone is honest, decent and able to resist temptation.

Programming Version 0.4 Page 255 of 356

304 Four digit PIN numbers on cash cards have 10,000 possibilities - a fact worth keeping in
the back of your mind.

16. Security

Encryption
We shouldn't be dealing with encryption until we've looked at security in general, but
since this is where most programmers begin we might as well kick off with a little bit of
technology.

The basic principle is of course that only somebody with the special key can unlock a
message. This is used in two ways:
1 To share information privately between key holders
2 To allow somebody to prove they have a key.
For example

• I send you an encrypted email.
• Then you use your key to read it (usage 1)
• When I phone you up later I can ask you what the message was. If you don't

know then perhaps you're an imposter.(usage 2)
"But surely" you ask "Why bother with steps 1 and 2 when all I have to do is phone you
up and ask what the key is?" Suppose it is Mr Fisher pretending to be me: "Hello. Just
a formality to prove you're the real you, there's been a lot of impostering going on lately
and you can't be too careful. If you tell me the key then I'll know you're you." Hmmm...
With the three step procedure you were able to prove you had the key without showing
it to anybody. This is typical of the knotty logic of establishing trust, proving identity
and many other aspects of practical security.

Method and key
Which combination of the following is secure?

Armour plated strong
room door

or plywood door

combined with

Bicycle chain combination
lock with three rings

or precision engineered
combination lock with 50
positions and 10 turns

You're right of course: The key needs to be strong (in this case many combinations) and
the method (in this case the door) needs to be strong. A weakness in either is fatal.

In computing terms the strength of a key is given by the number of possible
combinations it could be. A key of six digits has 1 million possibilities, a password of
four alpha numeric characters has 1.6 million (36 to the fourth power) 304 A ten
character key has 80 bits so (theoretically, on average) it would take 240 guesses to find

Programming Version 0.4 Page 256 of 356

305 To convert 2foo to 10bar : bar = foo/3.3(ish) (or / 3ish) so 240 is about 1012

306 Though they're often disappointed by the ease of subversion.

the right one305.

As well as good keys you
need good and
appropriately used
methods. Luckily a great
deal of research has been
done and you'll find ready
to use, verifiable, code to slot into your application. Typically you give a routine a key
and a message to decode (or encode) and you get the plain text (or encrypted) result if
it's the right key. Different methods have different characteristics so you'll need to
research the subject of block cyphers and stream cyphers for yourself. If you're tempted
to write your own for your very own private purpose

(a) it will be a lot of work to perfect
(b) it will be interesting if you like working through all the possible ways
information might leak, and
(c) there are people who get even more pleasure from breaking your method.306

In short, if you need something hidden, don't rely on a custom method.

Security by obscurity¤
So what about hiding it in a place where nobody would ever think of looking? There are
many practical problems. What about disguising it? Ok until somebody spots there's a
funny routine that gets called at 'test security moments' which peeks at this disguised
and out of the way data.

• DON'T depend on security by obscurity
• Assume your method is known (and therefore the likely attacks)
• Assume your encrypted data is available to the attacker

Therefore: Protect the key at all costs.

Check my password
Assuming you have a list or database of users how do you check their passwords and
flag them as logged-in? (Stand by for more security trapfalls.)

Method 1:
Store user's passwords in a file (or database record) against the user's name.

Alfred : MySekret
Bertha : 123321
Charles : T5F3q$-%

WCPGW?
 • A hacker manages to read the password file to find Bertha's password so the

attacker can pretend to be her, or anybody.
• The password file is stolen. Alfred might use "MySekret" for other purposes.

Note that this works even if this is 'last month's' list of passwords.
• The file is altered by adding a new user with a known password
• Charles' password is altered so he can't access the system (Denial of service)

Electronic data doesn't show any signs of being
tampered with so an attacker can work away at leisure.
More bad news: You can't tell if the attacker has
managed to read your message or not.

Programming Version 0.4 Page 257 of 356

307 Each letter of the alphabet is 'moved along' by 13 places with A wrapping around after Z.
So "explain" becomes "rkcynva".

308 You can but not by theft of the data file... ...providing you take precautions.

309 Matched only by the effort big organisations like banks put into covering up mistakes and
mayhem (Even when they know a customer is wrongly imprisoned for fraud.)

Method 2:
Store passwords in an encrypted
form, decrypting to match with
the one offered at the login
prompt.

This stops simple exploitation of
theft and prevents alteration to a
known password provided the master key used to encrypt passwords is kept secret.
But that's a big provided.
• The attacker uses a copy of the same system with the default security settings

to break into or fake the file.
• The attacker sets up lots of users with passwords like AAAAAA, BBBBBB to

see how the encryption works. Suppose for example all passwords were
encrypted on this system by the Rot-13 method,307 it wouldn't take long for the
method to become clear so it's then possible to reverse the encryption and
recover the key.

Method 3:
Don't store the passwords but a hash of them. You will recall that a hash is a
randomish number derived from the data. A cryptographic hash appears very
random and can't be used in reverse to find the original. By never storing the user's
password you can't 'leak' them.308

• It doesn't stop somebody setting up say a guest account altering the
unencrypted permissions for the account!

Review
Already you can see that encryption is the tip of a very large and wobbly iceberg. Not
only does encryption not help against some threats but it can introduce a false sense of
security and giver hackers a way into deeper secrets.

In method 2 we invite an attacker to discover the key we use to encrypt passwords.
They only have to find out how one plain password becomes an encrypted password to
extract the key. If you were in charge of a row of safe deposit boxes would you leave a
copy of the master key inside each one?

The moral
Don't try to use security tools until you understand security models.
• You'd be amazed at WCPGW. A lot of money has been spent on protecting the

wrong things in the wrong way.309 (@@@where did the idea that pw should be

Passwords of six digits are often dates
which might reduce possibilities to
hundreds or even one if it's a password for
a person and you know their date of birth.

Programming Version 0.4 Page 258 of 356

changed regularly come from? ... effective?)
• I've tried to whet your appetite but there's so much a whole book could be written

on the subject. I recommend you immediately purchase Security Engineering by
Ross Anderson. It's what you need to know, it's very well written, authoritative and
interesting. When you've read this catalogue of devious exploits, clever
techniques, unexpected flaws and why-don't-people-learn-from-mistakes then
you'll be ready to chose the appropriate security techniques for your applications.
It's required reading and a cornucopia of WCPGW.

Safe applications
Malicious input
One of your tasks is to avoid inputs being used to subvert your program.

Suppose you give your users an opportunity to add a note about their hobbies, latest
projects or whatever. WCPGW? What if the malicious user types in:

Hacking"; delete from user where userid=123;
When you run the SQL query

Update USER set hobbies="data from screen" where userid=567
the full query becomes (split onto new lines for convenience):

Update USER set hobbies="Hacking";
delete from user where id=123;
" where userid=567

Which SQL interprets as three separate commands. The hacker doesn't care if the first
and third commands work the mischief is in the second. This could of course be 'delete
everybody' or a 'give me administrator permissions' or a 'set my account balance to 2000'
command. This attack is known as SQL-injection and is easy to try, relatively easy to
protect against but often ignorance, or 'it will never happen to me' prevails.

Another common form of abuse is when you allow people to send emails. In the
address line or message area they might put 1000 recipients.

Malicious input can be used to confuse a system into giving away information useful to
a hacker. If your program crashes with the message "Superfoo version 1.2" then that
tells me exactly what level of security patches haven't been applied. It might helpfully
give a stack dump telling me that "Function ValidateUser failed at 202A5C:6FA024" so
directing me to look at a certain place in the binary code for a convenient place to
bypass the test by patching the binary. Typical attacks involve giving very long
arguments or devious but valid input.

The moral is to validate everything that could be hacked and trap any weird exceptions
in a security-neutral way.

Secure security controls
It's quite common to need to validate a user's credentials or licence validity.
Method 1 :

Check at start of program. If fail then exit.
WCPGW?
• The check is bypassed or faked by a hacker. The attacker runs your code inside a

debugger stepping through until the entrance to the protection function. All they
do is replace the 'jump to check function' with 'no operation' or replace 'if check

Programming Version 0.4 Page 259 of 356

310 Read Security Engineering for the reality of the effectiveness of photo cards.

311 Secure as far as executable code is concerned. But there's not much to be done to stop
people copying HTML web pages and hacking them for their own use. PDF is a bit better
as you can theoretically stop alterations.

312 Discuss.

function returned OK do foo' with 'if NOT check function...' This can often be done
in a few minutes. (Typically used to turn demo versions into full versions.)

• Some permission flag gets left over from a previous session (Often engineered by
foul means.)

• Confirmed state for a different session is used in this one. (Equivalent to flashing
somebody else's ID card.310)

Once 'in' the intruder can proceed unchallenged.

Method 2 :
Check at intervals throughout the program.

Method 2a :
Check when specific authority is needed for certain tasks.

This just requires the hacker to either isolate the test routine to bypass it which they've
presumably done already or fake it more often. So hardly any advantage over method 1.

This illustrates the futility of adding quantity instead of quality. Five easily breakable
locks are no stronger than one easily breakable lock. In this field quality means quite a
bit of savvy and appropriate technology.
• If your code can be hacked then you're on shaky ground. But how will you

guarantee that your code hasn't been hacked? Do a checksum¤ of the binary
code... ...but the checksum part of the program can be subverted. - Gloom!

• If your code is secure (say it is being executed on a server under your control)311

then you can validate users and their permissions using tokens. There is still the
matter of the forged ID.

• What's to stop an eavesdropper discovering somebody's password? It's quite easy
over a network. A trojan¤ keyboard snooper might do the same thing.

• A popular method for validating users (and weeding out bots on web pages) is
challenge-response. The system gives a puzzle which only a genuine user/client
can solve. For example : What's your mother's maiden name?312 What is this
number plus the random number we agreed on earlier?

There are very clever technologies such as SSL which protect against some things. I
can't tell you which bits of the system you're going to have to look after yourself because
of the complex interaction with various security technologies.

Deterrent
Because your latest program is so useful and you're so public spirited you've decided to
release it as shareware. Jolly good. There's a message in there which says something
like: Please support shareware - Send ten dollars to me@mydomain.com. Before

Programming Version 0.4 Page 260 of 356

long your very useful program is being used in many places but strangely the message
reads : Buy the professional version for 10 dollars from
www.malwarehouse.com. If you look at the binary of most programs using a hex editor
you'll see messages like this in plain text just waiting to be hacked.

A way to combat this is to have a table of messages which are encrypted, being
decoded as required. This makes it quite difficult to hack but far from impossible. (If
you're considering internationalisation then you have message tables anyway.)

Installation security configuration settings
For the deployment of any application there are likely to be well known bad practices
which increase the risk of data and source code being leaked. On the one hand each
configuration issue required detailed technical knowledge, but on the other they are
widely documented.

If you're deploying a server based application then the management of file access
permissions depends on the security management features of the server's operating
system and any other services (such as a web server). You may find it convenient to run
your development system with lose controls, but at some stage these need to be
tightened up, tested, and probably most importantly - because they're slippery -
documented. A common ploy is to keep data well away from 'executable' code and
only allow access to the data directories by the server 'user'.

How do you protect confidential data
on a system that's not under your
control? By making sure only your
application can read the data and that
there's some key required to run your
application. (Well you've protected it
against physical theft - for a time at
least.)

Review
The management of keys and levels of access to privileges is a knotty problem well
beyond the scope of this book. Your job is to do the other bit, making sure it's 'no-
key=no-see'. This is a slippery problem which you need to address diligently and
persistently.

One of the ways to improve security is to make it easy for users to operate the system in
a secure manner. Suppose your program has to be run with full administrator privileges
- Not only does this open up the possibility of abuse of your program to do naughty
things on the system, but it encourages everyone to know the administrator's password.

All manuals have a tedious section 'that
doesn't apply to your development
environment' about how to deal with
various threats. You need to investigate,
experiment and probably research further.

Programming Version 0.4 Page 261 of 356

17. Assisted
development

So now your workshop has been kitted out with raw materials, good practice manuals,
and useful tools. There's a database engine sitting in the corner, an old but reliable
compiler over there amidst the quiet order/disorder of a craftsman's bench. You've a
code of self discipline and a sign on the door Please do not annoy the genius as
withering scorn sometimes offends. What more could you need?

How about some:
• Jigs and moulds to help construct often used parts
• Ready made sub-assemblies which just need a tweak

In this chapter we'll take a look at some ways you can use to develop applications
quickly and reliably. Firstly these are not to everybody's taste. Secondly they can be
over-used. Thirdly they can require significant development infrastructure investment
and overhead of third party code. Fourthly they may not be mature and reliable. Fifthly
you may be locked-in to a code-base with no certain future.

The purpose of this chapter is to make you aware of the possibilities and ideas so that
you can consider experimenting. Even if you don't 'buy-in' to what follows it should
illuminate the ways you evolve to make development fast and efficient.

Libraries
The first port of call for a programmer in search of a quick solution is to look for ready-
made code. This is great if it works.

There are three main problems encountered with libraries:
• The background code base which they work with often isn't exactly the same as

yours. For example the library might be written for a later version or different
dialect of YCPL, or require further libraries.

• There may be known limitations with the code which is considered a very minor
issue by the library author but could blow up into big trouble for you.

• You're often in the dark about the quality of the library code and may have to cross
your fingers. Fixing problems may be impossible.

Third-party code may be your only option where you need to operate a specific piece of
equipment or work with a proprietary file format. Nowadays there are often wrappers
which can make it easier to access the function calls in these libraries in YCPL.

Of course during the course of your development you'll build your own library of useful
functions and objects. Recall the extra effort we put into tracing and logging in chapter
13 @@@ because it was obvious that this code would be used over and over again.

Programming Version 0.4 Page 262 of 356

313 Many years ago at a job interview I was asked out of the blue what the ISO character set
was. Result : A complete blank. Of course later I twigged what the twit was talking
about.

Standards
Although not in themselves tools for making software, standards can be useful ready-
made specifications.

• They provide a reference for inter-operation
• Specifications for your software to meet
• Specifications you're expecting 3rd party components to meet
It's quite rare for any software to completely implement every single feature of a
standard. This doesn't stop the marketing wallahs making claims.

You also get a reference to the non-standard bits that you might like to exploit for
good pragmatic reasons. So long as you know where standard ends and
proprietary extension (or fudge) begins, you can make an informed judgement on
the significance of this deviation.

• They expand availability of inter-operating software. For example a program that
relies on SQL should be able to interface with a dozen databases with minimal
alterations.

• There are often ready-made tools for testing compliance, for example HTML
checkers. You may be able to quickly put together an exerciser for a 'standard'
component.

• With any luck there will be many other users of the component (attracted to it by
being convenient to interface with) who have already done field testing. Where
there is a definite standard a bug report of 'it doesn't do what it should' is more
likely to have to be addressed.

Standards are not essential, often they aren't even standard. Some seem to be more
fashionable than useful and can easily be used as a magic (but inappropriate) answer or
for the purposes of adding confusion.313

Design patterns
If you want to build a go-cart, you immediately get the picture of some box with an old
pram wheel at each corner. If you want to build a sledge you immediately get the
picture of some chassis with two curved runners beneath. These are design patterns for

Special note : 'Quality standards' of the Foo:9000 sort are
practically a scam. Either

• you understand, live and breath quality
or
• you go through the motions and tick the boxes .

Programming Version 0.4 Page 263 of 356

314 My reticence stems from the religious fervour with which some people promote design
patterns - some of us have been programming quite successfully for many years without a
needing a pantheon of text-book lessons. (In case you haven't yet twigged, I belong to the
'an engineer is an artist who will use every bit of technology to solve real problems really
well' not a 'make way I'm a scientist - I have the technology and I'm not afraid to use it'
school.)

315 Technical terminology (Technology) is always important where science meets
engineering. The same would apply if you were looking at the chemistry of dyes, or
physics of high temperature ceramics or forensics of archeology.

316 There are variants as people find their own ways of doing approximately the same thing.

having fun going down hill. Once you've looked outside at the weather you have
enough information to select which is appropriate. You can now start on the details,
look for construction plans catalogued under 'Go-cart' or 'Sledge', and discuss the matter
with others knowing they have the same outline model in their heads. The same
wouldn't apply if you tried to build a rocking horse on roller skates. Not only would you
have to build it without any obvious guidance but it might turn out not to work very
well either.

Design patterns are engineering sketches - not quite blueprints - that have been found
to be handy solutions for common problems. Well... umm... more like ideas that
designers have implemented over and over again and so to save worrying at the details
(such as they may be) you can use this template of ideas.

It's always a good thing to look at how others have tackled similar problems and this is
what design patterns allow you to do. Researching them should broaden your
knowledge of possible approaches to problem solving and the more choices you have,
and the better informed you are about their relative merits, the better. If I was to give
you a single example of a design pattern it would confuse you. You need to see a herd
of them gambolling together across the dry plains of computer-science-space to get the
flavour.314 Good luck with that - You won't find the abstractions and cross references
straight forward. Persevere.315

Layers
You will probably come across the Model-View-Controller (MVC) pattern.316 This is an
example of a layered architecture. Think back to when we were looking at design
methodology. We had a top-down and bottom-up approach, with the former leading us
to split our solution into logical components. Perhaps the most obvious way of doing
this splitting is by application function; for example the administrator's tasks and the
day-to-day tasks. Another way, which is not so obvious, is by nature of the software
mechanisms; for example (a) the database bits, (b) the user interface bits and (c) the
business logic. (This is like splitting the engine, luggage and passenger compartment
of a car - It's a lot easier if the mechanical gubbins are put in one place and you don't
have shopping bags round your feet while you're driving.) These are not alternatives -
you can sketch a table with application functions in columns and software realms in
rows to consider both.

Let us consider an object that displays itself on the screen as a button. Let us say in our

Programming Version 0.4 Page 264 of 356

application we want to use it to delete the displayed record. Here is what we could
program in Fudge:

class DeleteButton extends Button{
 integer : jobID; // we'll delete jobno this if clicked
 constructor(){
 this.caption = "Delete";
 this.jobID = 0;
 }
 method SetJobID(integer:ID){
 this.jobID=ID;
 }
 method OnClick(){
 db = new DatabaseConnection(); // fudge! No parameters.
 db.Execute("delete from jobs where jobno=" + this.jobID);
 }
}

With care this code might work but is it really an example of good programming?
• jobID/jobno : Shame there's no consistency in naming
• There's a fair chance of forgetting to call SetJobID()
• At first glance it looks like a good thing the database code is snugly integrated

with the clicking event. There's no mistaking looking at the OnClick() event what's
going on...
...Some quite serious database initialisation (the password authentication
arguments have been left out for simplicity)... some important business logic... and
updating the database.

• We may need to replicate this code if there are shortcut keys or automated
procedures.

From a design point of view we might want to decouple the display of a button from the
database and the business logic. For example if we wanted to use a different database
we'd have to slog through all the code of all the screens making alterations. If we
wanted to be able to switch between databases (quite common and a good selling
point) then either we're going to have to have multiple sets of source code which will
need keeping in step, or put switching logic into every control of every screen. On the
other hand, if we can treat the database operations as entirely separate from the visual
display, just joined by a standard protocol or interface 'glue' layer we don't need to be
messing around with screens when we're really working on the database. The converse
applies. If we found a lot of deletions going on 'by mistake' then we might add 'are you
sure' logic. Now we've got to worry about display stuff and also database stuff.

Dividing designs like this is often called
the Model-View-Controller (MVC)
pattern or three tiered architecture.
The designer develops the database as
required to support the application
without reference to the display. On
top of this fundamental layer is how
and when and under what restrictions
the data will be manipulated. Finally
the bit the users sees is added.

Patterns such as MVC can be anything
from ideas to keep in mind, a way to
organise your development process,
through to a formal structure for
automatically building code. Don't fall
into the trap of the latter without the
former.

Programming Version 0.4 Page 265 of 356

Templates
Code templates
One of the best database programs I ever used was based on code templates that
generated code for common activities such as displaying a table then providing
standard keys to insert edit and delete records. Not only could the resulting code be
tweaked if there was something special on a particular screen but the template itself
could be altered so that code generated would incorporate that alteration.

Nowadays with OOP and frameworks (next section), there should rarely be a need for
cut-and-paste-then-edit in code.

Aside : Working templates
You may find cut-and-paste templates useful for
• Developing documentation by hand. People like a standard format. Often there

will be a lot of similarities between pages of help screens.
• Re-using development administration tools.

Aside : Data templates
With some simple text replacement routines you can save a lot of coding and provide
flexibility when
• Implementing many variations of text messages.
• Allowing users to define layout of reports etc.
• Defining report layouts etc. yourself.
For example your application might send out a number of emails. You'd expect the bulk
of the text to be the same but with some specific insertions. You could hard-code these
message texts but if for some reason the body of the text needs to be adjusted it
requires all the delay, expense and paraphernalia of a programmer grovelling in the
code instead of a simple hack with a text editor, or even better providing a routine for
the template text to be stored in a database with a simple editing interface.

Frameworks
If, using our workshop analogy, libraries are brought-in sub-assemblies, and design
patterns are engineering concepts, then we still haven't got jigs. (Jigs are used
throughout manufacturing as a scaffolding to hold components as they are being
machined and assembled. It's a sort of specialised tool which is customised to fit the
article being manufactured. For example window frames are assembled by being
clamped in rectangular jigs with sides of adjustable length. Imagine the difficulty of
trying to keep all corners at exactly 90 degrees by hand - now add to that having to
locate drill for the fixing pins to the nearest half millimetre.)

Frameworks are a software equivalent of manufacturing aids that:
• Do the boring and repetitive stuff
• Speed production by rapid preparation and assembly
• Make sure the components align properly
• Can be fed specifications to produce finished or semi-finished parts.

Although in theory the whole development process could be supported, a framework
usually limits itself to automating code production. As I write, in 2006, frameworks are
becoming very fashionable with a host of evolving schemes. "Evolving" being a

Programming Version 0.4 Page 266 of 356

317 Warning: Some frameworks assume they are the only kid on the block. Even if you can get
them properly configured on your system to the Hello World stage could have trouble
getting more than one to run at a time. I found good intentions (if you share the
framework developer's view of the ideal design) let down by poor implementation.

318 The value of a prototype is that it gets the client involved in the problem identification and
solution exploration. Immediately there is light at the end of their tunnel. Immediately
you get a vote of confidence and allowed to see the really important details that they don't
talk to strangers about. Tip. If possible do this over a weekend - It gives you a bit more
time to mull over issues and the client will be impressed that you worked over the
weekend just for them. Tip No 2: Don't let yourself get carried away also. The prototype is
just a broad sketch for the purpose of communicating with the client not a design in itself.

euphemism for 'not yet mature enough to bet the farm on'. The big trouble is that you
need to make a large investment to get going and another large investment to discover
the limitations and how to work around them.317 Once you build a real application
using a framework you are committed to maintaining that scheme in good working
order during the lifetime of the application.

Frameworks are intended for building business applications from business process and
business data specifications. For example you might spend a morning talking to a
client about their operations, a couple of hours knocking up a database and by tea time
have a prototype.318

Review
Frameworks: Automating repetitious tasks is second nature to programmers so it's not
surprising that a lot of effort has gone into automating code production. It's certainly
impressive when you hand over a database specification to an application builder and
in 30 seconds you have dozens of fully functional CRUD¤ screens and a working
database. (That 30 seconds is the tip of hours of setting-up, configuring and hair-
tearing but you get the idea.) Frameworks can be thought of as automated templates.

My personal preferred approach is to keep all code live and
not to use code-generating frameworks. I put the 'plumbing'
in classes then create applications at the highest level
possible with the appropriate constructors and parameters.
In practice this means a large class library and coding the UI
with parameters taken from the database rather than
specifying the database and getting the framework to create
the CRUD¤ screens.

In your early years as a real programmer you have to establish
good standards of workmanship before you allow a program
make your code for you.

(In the early days, code generators will do a better job than
you will for straightforward business applications, and they're
getting better all the time.)

Programming Version 0.4 Page 267 of 356

319 Because there is no 'one-right-way'. Even if there was emphasis and detail would vary
enormously. For example in chapter @@@ I walked through a lot of testing of code from a
whitebox, and blackbox point of view but nothing at all about testing in the field.

320 CONSIDERED RULES: I've walked off a site - that's serious - when basic safety measures
were being ignored. I did that because I'd taken trouble to be informed about the
shambles and evaluate the consequences. In a software development context you might
insist as a junior that a senior properly checks your work, or conversely that nothing 'going
out under your name' does so by a series of shortcuts that "we'll pretend never happened".
This is part of being a Real Programmer - You have the confidence that comes from
knowledge to stick to your guns no matter what. (You'll come across plenty of ignorant
idiots - if you can't beat them, leave them - immediately - believe me you have nothing to
gain by compromising with a snake - leave and explore greener pastures.)

321 Literally - somebody who inspects the code and is satisfied nothing-CPGW.

Templates of data: Try to avoid hard coding anything that might be subject to
alteration. The alternative may be a database table of configuration parameters or (the
conceptual opposite of) so-called constants such as messages, email shell texts, or data
layout specifications.

Templates for development processes: I've deliberately avoided tabulating the steps
involved in developing software.319 There were been plenty of hints in chapter @@@
and I want you to evolve your very own set of considered rules.320 I expect you can see
that there are obvious connections between code and testing which should at the very
least lead to "new method Foo() suggests there ought to be either a test for Foo() or an
inspector's321 approval." Use templates like a checklist to save you having to remember
all the steps and snags between idea and implementation.

Design patterns : It's well worth browsing an encyclopaedia of design patterns from
time to time in order to refresh yourself about ready-tried solutions. With any luck this
will raise useful questions about your current sketch outline. Patterns can get a bit
academic which is why they are often illustrated with examples; which are there to
crystallise your thoughts not as instant-solutions.

Mature Real Programmers are unlikely to get on well with 'instant code generator'
frameworks. However they will probably have three things to help them produce
applications efficiently:
• Development tools created and collected over time and proved in use.
• Extensive libraries of powerful code modules
• A realistic appreciation of what should, could and shouldn't be automated.

Programming Version 0.4 Page 268 of 356

322 It's so difficult to remember what it was like just a few years ago without an Internet - A
bit like trying to recall when you didn't like beer.

323 At least they'll try to produce quality code.

324 Another way to put this is that ODPs wouldn't have bothered to read the book.

18. Get a life
That's the end of the technical part, there are some more morsels in the glossary and of
course a huge amount of specialist and overview information on the Internet. (So long
as you don't believe everything that you read there it's a fantastic resource and
continues to develop at an amazing pace.)322 Quite likely there will be big changes in
the way programmers work as a result, already in 2006 we can see a great deal more of
cooperative projects. Perhaps, who knows, this will lead to the virtual software factory
becoming a standard model for development, deployment and employment.

This chapter looks at the human attributes you need as a programmer and how to
exploit them. On one hand you need to be quick witted, knowledgeable and have the
confidence to stand your ground; but on the other relaxed, be able to listen and to work
with other people to get the best out of them.

Is being good enough?
An ordinary decent programmer(ODP) will have a certain fluency in one or more
languages, basic design ability and diligence323. Typically they will adopt techniques
and stick to them once they've found something that works.

All hail to ODPs! The world needs lots of 'fairly reliable - if limited' programmers. Dear
reader, if you've got this far you're probably ahead of the game already: The extra you
have is that you can see 'fairly reliable - if limited' is not a high enough target to aim at.
 You are champing at the bit to do research, pick up experience and experiment with
techniques and sample projects.324

Recall in chapter @@@ and appendix @@@ we discussed Bad Good Best I told you
that 'Good' was the 'Average OK' category but 'Best' was the cream. Even if you expect
to program as a hobby you'll still benefit from the programmer's 'super-hero' skills
discussed in a little while (as well as having cute and vice-free programs).

Brains
Programming at the higher levels requires a trained and fit mind. Your brain must be
regularly worked hard (and similarly relaxed) so you don't crumble under the pressure of
the tough intellectual demands that go with programming. Anyone training for sport
will tell you that the hard bit is starting when everything aches and you soon get
exhausted... ...But if you keep it up you'll soon find the introductory tasks easy. (That's
what this book has done. If you go back to the early chapters you won't find them
nearly as challenging as they were to begin with. Congratulations.)

Programming Version 0.4 Page 269 of 356

325 10 miles each way to the pub is a pathetic distance - And I'm NOT an athlete.

326 On a general note if long hours give you back ache, wrist pain, headaches or similar
symptoms then do something about it - Don't take a shrug from management or "If we let
you have a trackball instead of a mouse the everyone will want one" as an answer.

327 One of the reason for naming conventions is to be able to translate the idea into a likely
name. For example the popular 'functions start with a verb' convention will lead you to
look first in the manual for ReplaceString() rather than StringReplace(). One less thing to
remember... ...Except in my experience this is honoured more in the breach than the
observance. Arghh!

Real Programmers are professional intellectual athletes, and stand out from the crowd
of couch potatoes in the same way as other athletes. You'll be told 'how brainy you are'
and considered odd by those that don't appreciate your powers, endurance and
particular principles. "Sorry I can't work late - I've got a training session for next
weekend's race" is something you might hear a marathon runner say. "What! You
cycled 10 miles here today!" is something I get all the time.325 The RP equivalents could
be "Sorry. I'm going sailing tomorrow - There's no point in me starting until the user
comes clean on their real requirements" and "What! You worked through the night!"

The trouble with brain-exercise is that you can't sensibly measure kilometres covered or
best times. Don't be fooled by simplistic IQ testing. For a start it doesn't measure your
comprehension and knowledge acquisition technique and endurance. Some people are
good at teasing out small scale detail while others are good at quickly assessing big
issues. (Obviously you should try to be adequate at both. For example it helps if the
words in your neat summary are spelled correctly.)

Checklist of brain fitness tips
• Get your eyes tested : Poor vision makes long reading tasks very fatiguing.326

• If you find memory tasks difficult use a technique. Many people don't need
detailed memory much for programming or design - That stuff gets written down
for the very reason that detailed memory is subject to error. Mostly you'll need to
remember people's names and jobs. Practice whenever you meet a group.327

• Mental arithmetic and back of envelope calculations are good 'keep in trim'
exercises. Being quick, providing you're careful, can be very impressive and also
trap disconnections with the real world and wacky estimates. Division is
particularly important as estimates thrown at you such as "The total daily will be
N"' can be looked at on a per hour or a per product or per district or per person basis
which might raise a few eyebrows.

• Distinguish between closed and open ended challenges. In the first you're trying to
get a 'right or best answer' while in the second you're creating possible solutions.
These are somewhat contrary as one is trying to restrict answers while the other is
trying to expand them.

• Some puzzles rely on finding the right method of solution - Once you hit on the
method you can derive the answer, so the puzzle is the method. There are some
awful quiz and 'test-your-IQ' books that don't realise this.

• Just because you're a professional problem solver doesn't mean you have to be
good at working out it was the butler all along. Problem solving ability is very

Programming Version 0.4 Page 270 of 356

328 Games are often used for programming practice - leading you to explore aspects you
wouldn't usually come across. A lot of pioneering work with artificial intelligence and
languages supporting flexible data structures for knowledge representation was
stimulated by gaming.

329 Absent minded professors don't get Nobel prizes for being absent minded.

330 Motto: Read lots of complicated stuff - Write a little clearly.

specific to realms - You may be good at converting an outline design into layers
and components but hopeless at working out horse racing odds.

• Playing (and inventing) games is a traditional programmer activity.328 There are
three useful brain skills here:
• Efficiently converting a lot of data into significant patterns.
• Developing strategies.
• Getting inside the minds of the opponents.

• Try to be conscious of your degree of focus and also the number of things you're
juggling with at the same time. Don't be afraid to offload some items onto a scratch
pad, there are no medals for forgetting.329

• Alcohol and caffeine will affect your mental abilities: Be aware of your actual
reaction and their delayed effects. There's nothing 'wrong' with these substances.
On the contrary, you may find a bottle of wine makes initial discussions more
relaxed and creative. As a professional should you have a tool-box of a few tricks
for 'thinking around the subject', but others probably have no experience of this at
all. So you may find blunting their prejudices with alcohol and bonhomie
necessary. Alcohol is a fun way to switch-off the strictly correct analytical mind
and watering the what-if, who-cares-about-details, creative mind.

• Prescription or over the counter drugs can have unexpected side effects. Watch out
for them and be prepared to wind down your work schedule a notch or two.

• Physical fitness and good health is a big help for the person who wants to apply
their mind to problems in detail for long periods.

• Study: Your maths teacher wasn't really expecting you to be spending the rest of
your life working with sines, cosines and tangents; their cunning plan was for you
to learn how to accumulate and assimilate knowledge with precision. Then your
history teacher made you write essays in order to acquire the habit of analysis, and
synthesis. These are basic knowledge manipulation skills for professionals - If
you're not fluent then practice by blogging or writing a diary or editing a
newsletter.330

• Even top athletes like Tour de France riders have rest days and spend most of the
race doing the minimum necessary to keep up. It's a fantastic feeling rattling
through problems, finding the 'right' answers and cracking worrying issues but
when brain-fatigue sets in there's simply no point in you carrying on. You must
learn to pace yourself and stop before your brains turn to mashed potato.
• Don't be afraid to call 'time-out' - It's one of those things that is difficult to get

across to ordinary people because mental exhaustion doesn't show up like
sweat and muscle cramps. Obviously it is better to have planned breaks where
convenient, but why not work through the night when you've got a 'following

Programming Version 0.4 Page 271 of 356

331 When I was nine-to-fiveing I always had at least a 45minute lunch break and in the 5pm to
9pm evenings when everyone else had gone home I'd switch to something different and do
a proper day's work.

332 I can vouch for this soothing pastime as could Winston Churchill. Physical achievements
can give great satisfaction when your everyday work is abstract.

333 Take it as a compliment. See how quickly you can achieve the high ground of fact-based
decision making. "Excuse me can you tell me where that figure comes from?"

wind'?331

• Relaxation can be difficult - Try doing nothing if you don't believe me. Without
a doubt you need an environment where the distractions don't require you to
apply your mind to 'matters in hand' - so no phone calls or colleagues dropping
by for gossip. Leafing through a seed catalogue and planning your garden,
inconsequential chit chat with strangers in a pub, doing the crossword,
bricklaying332 and hiking are all examples where you are simply doing
something else of no particular consequence.

• Take special notice of the precise use and mis-use of words. Not only is this
an amusing intellectual exercise but a vital part of survival. Does the user
want or need a feature? How often do you see activity confused with action?
Often - What does that mean? You can use a mental highlighter when
listening to management-speak, sales-speak and geek-speak then go back to
these items when, after due consideration you are asked for your professional
opinion. Do this a couple of times and you'll soon be on the bullshitter's
blacklist.333

Coding
What goes wrong
There are many situations where a programmer given a 'complete' specification and
told to turn it into code with the design aspects limited to the odd internal data
structure. This might be good use of your talents if there was a particularly tricky
algorithm to implement but otherwise just hours of mind-numbingly tedious typing.
Soon the 'as soon as I can get this to work I'll declare it finished' mentality sets in.

There are many programmers who would rather spend their time polishing code,
looking for the most complex algorithms and object models, creating spiffy development
tools and giving geeks a bad name rather than delivering a finished result.

Then there are top-heavy development environments where programmers are expected
to use baroque object models and over engineered tools in order to 'produce quality
code through corporate standards'.

To understand why these are lopsided ways of doing the job means understanding the
skills of the programmer, needs of the project and suitability of the development
environment.

Coding in perspective
All the other activities described in this book are peripheral to creating finished code.

Programming Version 0.4 Page 272 of 356

Having said that, those other activities are essential to good programming and together
will take roughly the same amount of time.

(@@@ add a table on the end of the code/test chapter ??? somewhere else? to
illustrate sequence of events.)

Of course coding shouldn't happen in isolation from the problem identification-
specification-design-feasibility stages and the check-document-test-deliver stages. But
some programmers are not competent to tackle all these aspects on their own, often the
size of the whole task is too much for one person. Discussion amongst technically
experienced colleagues can be useful to develop and refine ideas. So some assignment
of skills to tasks will be required. Also there will be some sharing of work in progress,
and the need for good communications, if there is to be efficient cooperation. Clearly
this requires a controlling mind and teamwork - A subject we'll look at in more detail in
a moment.

Coding standards and infrastructure
Ask a dozen programmers to produce 'the same' code in the same language and you'll
get a dozen different programs, taking different times to write, with different strengths
and weaknesses. Now swap the code around so that each of the dozen has to work
with another's code. Uproar ensues as each reacts to 'stupidity', 'unnecessary
complication', 'poor this', 'bad that', reinventing the wheel, and generally being different.

Coding standards are an attempt to make it easier for programmers to share each
other's code. As you've guessed there is no standard standard. For example I've used
[T] as a 'needs to be tested' flag but you're unlikely to see that used elsewhere.
(@@@APPX my coding standard??) Naming conventions, comments and layout of
braces are usually at the heart of these holy wars¤. However there are good reasons for
establishing and sticking to conventions in a development environment.
• Making code easier to work with

• Automated tools are able to read and interpret the code. For example I like to
have some code libraries sorted alphabetically but when adding to them I work
at the end of the file and use a sorter once I've finished messing about with the
new bits. My PHP documenter can extract all sorts of useful information if it's
carefully formatted.

• Programmers can share meta-information (such as the [T] for test-me!)
• Programmers can interpret embedded information. For example knowing

immediately that (in my standard naming convention) Foo() is a function or
method, Foo is a parameter and foo is a local variable.

• Programmers can quickly navigate through code. For example it might be your
convention to put constructors at the top of a class followed by Get...() and
Set...() methods and so on.

• Standard workshop practice for code quality
• Using standard routines rather than hacks.
• Using (or not using) certain types.
• Using certain levels of code checking as a matter of policy.
• Using (or not using) some techniques or programming strategies. For example

Programming Version 0.4 Page 273 of 356

334 You can of course be helpful on a personal as well as professional level. "I've got the name
of that show you were asking about" or simply "borrow my umbrella". A little bit of social
respect goes a long way. In the days of typing pools and data entry departments you
were always helpful and courteous to the lady in charge - Not only did your work jump to
the front of the queue but the look of disbelief on other people's faces when your work was
hand delivered with a smile was worth a fortune. Go out of your way to be charming -
Practice.

335 I once got a job by 'being interested in' Hydrogenation having seen a "No naked lights
Hydrogenation plant' notice on my way in. Fortune tellers use the same tricks.

it might be 'house policy' not to embed message strings in order that they may
later be internationalised in a modular fashion.

• Avoiding, or exploiting, or automatically switching at run time, or manually
selecting at compile time, dialect-specific or version-specific language
features.

• Common tools
• Common filing system

Working with others
Real programmers will be streets ahead of dumb users, clueless colleagues and idiot
managers. Err... There's a fair bit of truth in that statement, but while they may be
dumb, clueless and idiotic you still have to work with them, so letting on might not be
the most successful strategy.

Most of the time you just have to be patient while making encouraging noises to help
them to catch up with the analysis you arrived at a while ago. Avoid getting embroiled
in discussions as a general bod to bounce ideas off. Instead be sure what purpose you
are serving at a meeting and stick to that field.

On one hand I make it a rule never to attend a meeting without an agreed agenda
particularly meetings where there's a danger of decisions being made. On the other
hand informal contacts are vital. These really work if you can start by being helpful.334

Users
• If you get users talking about themselves that makes them happy and you may

pick up some key phrases which when fed-back makes them think you really
care.335

• Do as much listening and as little talking as possible. Make it easy for them to tell
you things. How do you do that? By nodding, saying 'yes', by sympathising with
their personal problems and congratulating them on their achievements.

• Your notebook is a solemn badge of office. A fancy fountain pen goes well with it.
Try a hat, bow tie and silk waistcoat. People love cheerful eccentricities because

"Hey Peter. What would you do then?" can be quicksand. Be firm enough to
finish off the discussion along the lines of "X didn't work last time - what's
changed?" or "It seems you can't go further until you have more data."

Programming Version 0.4 Page 274 of 356

336 Some of the players may be very sensitive about bad debts - How they occur and who'll
get the blame if the true extent is found out. This is a good example of X-Ray vision. You
might have to deviously put some 'stop this silliness' into your program.

337 Quite possibly because they have their own, different, prejudices.

you're probably the most interesting thing that's arrived in their office for ages.
• If explaining something to users then use their language. Try not to use abstract

concepts, instead use practical examples and props. Always set the scene, or
better still get them to set it.

• Try to get the users to express their issues themselves with open ended questions.
Suppose you were considering where to put the 'chase late payers' screens and
what degree of automation was appropriate and what sort of blacklisting to use.
Bad: "I suppose you have problems with bad payers?" For which you get a 'yes a

bit' a 'no not really' or a disagreement.336 That's not very useful is it.
Good: "Does that always work smoothly?" Which opens the way for an

examination of the issues in general. Is credit being given to the wrong
people? Is follow-up slack or difficult? ... "How could that be improved?"
This then leads naturally onto a quantitive exercise of how many, how
much, and so on; so between you you can clarify the priorities and how
much the computer system should do.

• When things go wrong, even (or especially) if it's not your personal fault then
• Never panic, but if there's something practical that ought to be done

immediately then get onto it. Informing the management can come later.
• Make a realistic assessment of the actual consequences before discussing it.
• Make it clear that your job is to clarify and correct. Others will do damage

limitation and look for blame.

Colleagues
Your colleagues may have the same opinion of you as you have of them! There's a lot of
'my way is the one true way' and 'I haven't got time for that fancy stuff', 'we've managed
without a crash test procedure until now' not to mention pure stylistic bitching.
• Geeks soon cluster together and evolve petty status symbols and codes, often

based on arcane trivia or expertise, which make you wonder how pointless the rest
of their lives must be. So long as you recognise this knowledge isn't wisdom and
reaching the 53rd level of Dungeons of Zog tells you more about someone than
they'd be proud to admit, this badinage is harmless. In fact you can use it to weigh
up the calibre and characters of your colleagues quite quickly...

• ...As can asking relevant technical questions. Be careful not to fall into the geek-
trap of evaluating technology or techniques aloud. There may be plenty of
programmers around who are as critical as you are,337 and if you subtly signal

It's really useful to be trusted and approachable. You'd be amazed
at how difficult it is to get users to report bugs and other problems -
even when you've got a formal bedding-in period.

There is no better way to achieve this than being a knowledgeable
team player 'on our side' when the going gets tough.

Programming Version 0.4 Page 275 of 356

338 But heaven help you if you try being a prima donna without delivering what's on you bill
material.

339 Or save up some tangled stuff for after the others have gone home.

340 Management anger therapy occasionally works a treat - but be careful!

you're thinking this over might show their thoughts, but there's no point in opening
a can of worms unless you have a fully thought through alternative that you can
articulate or present as a fait accompli.

• Don't be hasty: 'Not the same as what you're used to' doesn't necessarily mean
wrong. Check the BGB¤ scale. While you want to be in the Best category and
need the environment to perform at that level you can make a case for that fairly
easily.338 Where you see Bad you'll need a considered, and if possible easy (or look
here's one I've done to show you) solution.

• The majority of you colleagues will be in the Good category. Adequate. Don't be
afraid to call out the Bad ones when you've got evidence of utterly unacceptable
performance. If you're supposed to work with this person make it clear what your
conditions are in writing.

• One way of showing how smoothly you integrate and calmly you analyse issues is
to keep written records. Not to excess but the sort of stuff that is useful for quality
systems and project management. (Even, or especially, if there is no quality system
or project management to speak of.)

• Remember that for the most part programming is a solitary intellectual pursuit.
Demand an environment where you can get on with your job. In my experience I
can do twice as much work in my study at home as in a client's office. Not only do
offices provide distractions and encourage interruptions but you can't pace your
work according to your mental schedule. When you want to do 'head-down'
programming make absolutely sure that nuisances including the management
know that DO NOT DISTURB means what it says. If necessary turn up early and
leave early so you can get in a couple of hours on your own.339

Hone your inter-personal skills - Programmers are a difficult bunch to deal with and
there's no escape if you can't cut the mustard yourself. Most of the above only works if
you really are good and obviously in the Best category. Typically you'll have been
drafted into a project for some purpose. That purpose is what management will be
focussing on even if your wisdom is well applied elsewhere.

Management
Managers are like children:
• They demand attention
• They don't understand the meaning of 'No'
• They make unexpected demands
• They won't be put off by reasoning
• They assume your purpose in life is to work for them
Unfortunately "Go to your room" 340 doesn't work - while smacking is so undignified.

• Don't under any circumstances be pressurised into giving an opinion or
commitment until you have had (a) the relevant facts and (b) time to consider them.

Programming Version 0.4 Page 276 of 356

341 This is vital. It will tell you a lot about the authors and their view, knowledge and
competence. Also of course you may find the report is rubbish and be able to say why.

342 Trick: Certainly amongst men, giving corrective advice and compromise is easier when
walking along or in a public place.

343 Try to get 'your' item near the top of the agenda then you can leave the meetingophiles to
it and get on with something else. You can save hours of ennui until everyone twiggs your
game.

If you're being asked for a professional opinion of feasibility or suitability or cost
etc. then insist on access to the facts in writing so you can study them, and in your
written response quote them back. If you're being asked for a rough first guess
opinion then make sure your response is in writing marked "FIRST GUESS" and list
the unknowns. (@@@APPX paper tools O-M/Factors) This is good practice
anyway of course - The point is not to be bullied by management into guessing.

• If you're being asked "Am I right? - I have this meeting in a minute and I know how
particular you are" (Subtext: "I'll be spending your hard-earned trust to save my face
and I want to go through the motions of consulting you first.") If you have
reservations then bluntly say "I have reservations. There are issues still to be
addressed." If you think the manager is poorly briefed (or hasn't bothered to read
your report) then brief them in writing (or suggest they hand round your report) so
they at least have a crib sheet. Whether they came to you out of deviousness or
genuine ignorance the professional thing is to make a clear summary...

• ...Ensuring you distinguish between uncertainties, facts, opinions, and
recommendations. This is standard practice but even more important when under
pressure with the possibility of fudging and fumbling about to happen.

• Make it clear that you're not on-call out of working hours to deal with things that
should have been sorted out before. ie Don't be bullied into accepting feeble time
management by managers.

Q: As a real programmer you will have discovered out how things work, how they
should work, WGPGW and split the What do we want to achieve from How will we
achieve it. Also you're quite likely to know there's 'boggy ground ahead'. When
who should appear but someone of that tribe of institutional ignorance, collective
optimism and perennial panic called management, to persuade you that you've got
it all wrong. Worse still you're invited to attend a meeting. What do you do?

A: Use the written word. With any luck you will have prompted this situation with a
well written report which has ruffled a few feathers. If you haven't then ask to see
the report not the waffle.341 If there is no writing then you can choose between an
informal discussion342 or putting something down on paper. Note: If "there's
nothing to put on the paper" then what are people basing decisions on? Tarot
cards?

Avoid an inquisition at all costs unless you are fully prepared. Firstly you need an
agenda before the event343. Second you'll want to circulate your paper in good
time. Of course these two matters are standard good practice... ...so ask yourself
why, and who's going to lose out by Bad practice. The obvious practical benefits of
prior circulation are that your audience should be informed, at least they may have

Programming Version 0.4 Page 277 of 356

344 Notice how you're an ambassador who may have to deal with ultra vires - non
programming matters.

345 There are a lot of useless decision makers about. Some so awful you wouldn't believe.

346 It works for me. I take fooling very seriously.

347 Campanology should be ideal relaxation for programmers as it combines physical exercise,
precision, team work and tricky mental logic to follow the change pattern.

read the summary, and you don't need to waste meeting time going over it all
again. Now you're in a position to
(a) Put the paper into the context of the meeting. For example "The user has

requested feature X. This report describes the programming resource
implications for the three options being discussed today." (Note. Don't tell
people their job.)

(b) Add-in late breaking news. eg "Since the report was written, the estimate on
page 3 has been revised to "Acceptable (providing foo)".

(c) Cover any queries raised before the meeting that might indicate confusion or
matters on the edge or beyond the strict terms of reference. eg "For
clarification staff holidays will not be an issue".344 Here (or in (a)) you might
also want to stress the confidence of the conclusions. Some people have a
nasty habit of ignoring other variables used as assumptions. For example
fixing on 46 days as a shorter period than 50 when the uncertainty might be
measured in weeks and then taking that as the only thing that matters.345

Which leads to the most important and clever part:
(d) "Any questions?" It's their meeting, let them do the talking, try to see if they

have a hidden agenda. If your facts are questioned that's no problem you
know their provenance. If it's your opinion that's being questioned then make
sure they appreciate the difference between analysis of the problem and
recommended solution.

Review
Dealing with users and colleagues requires good inter-personal skills combining
psychology and simple pleasantness. You must be easy to talk to, appear interested in
other people's problems and 'bring something to the party'. This last item might be
entertainment346 or a distracting natter about football to begin with, but that's only a
'way-in' to trust, picking your brains and asking your assistance.

The sure sign of a nerd is someone who thinks the number of gigawotsits you need to
play the latest hacked release of Kingdom of Zog is interesting to anyone else on the
planet. Get a life! If you can't talk to ordinary humans about ordinary things, or at least
strange things that are real, then you're a sad waste of DNA that needs to go bareback
bronco riding, ballroom dancing, bell ringing347 or all three.

The better your managers are the more you can allow yourself to be drawn informally in
order to expedite work knowing that everyone is playing for the same team. You can
give an opinion based on little more that thin air knowing that your audience
appreciates you're busking it a bit and might change your mind after a good night's
sleep. But be aware that managers have different agendas, knowledge and expertise

Programming Version 0.4 Page 278 of 356

348 If you can't skive off participating in some barmpot team-building weekend then do some
real team building: Secretly collect a handful of subversives and make unorthodox
preparations in anticipation of your own party, manufactured crises and problem solving
exercises. Much more worthwhile, more fun and more adrenalin than the cheap thrill of
walking over hot coals.

349 Also spotting hidden talents and coaching. As well as spotting character flaws - and in
time become disillusioned.

which can lead to abuse of trust. In any case you will be relying on the written word
(and possibly the occasional graph and diagram, but particularly tables) to
communicate. If this causes stress then ask yourself why standard practice should be
abandoned and who might suffer as a result!

Teamwork
Although coding is a solitary
occupation, most other programming
tasks involve other people. Even if you
design everything yourself you can still
benefit from floating ideas past people
to see what they think. Often there will
be a horde of various flavours of
programmer in an office in some
amorphous mass, typically operating on the 'ant and twig' principle: Give enough ants
enough twigs and they can build a nest. Each ant scuttles around doing its bit in an
amazing example of the power of cooperation. But that doesn't really qualify as
teamwork, just group efforts.

Building teams
Millions have been wasted on sending groups away for the weekend for team building
exercises. Walls are not built by throwing bricks together and neither are teams.348
Teams are built by team builders who set out to organise a pool of useful, trustworthy
and loyal participants. As a technically competent programmer with half-decent social
skills you are in an ideal position to say "Hey here's a good way to share the work and
put our heads together. You're good at X and you're good at Y and I can do a bit of Z at
a pinch so if we pool resources we can crack the whole project with maximum
efficiency"

You don't need formal qualifications or
a job description to be a team builder.
Once you've got the knack you never
loose it, and you are always looking for
opportunities for getting talent to
participate in group activities.349 Of
course you need to assess people's
strengths and weaknesses and match
them to your overall vision of what

Managers have their problems too : Programmers!

There's a great deal of satisfaction from
creating a harmonious team capable of
covering all the bases. Once you've got a
bit of experience you'll be forever getting
other people networking in order to
discuss issues before they turn into big
problems.

A committee is a parley of private
interests. A working party is a group with
a single agenda. A team is a group that
starts from the premise that we're all on
the same side working together with
common interests.

Programming Version 0.4 Page 279 of 356

350 Have fun taking the mickey out of mission statements.

351 Would you trust your colleagues to operate on you? If it's any consolation, many surgeons
don't trust the majority of their colleagues either.

needs doing. You should have these skills so put them to good use. Normal people
enjoy working sociably but many programmers need extra encouragement because of
irritating experience with ant-and-twig which can lead to disjointed work schedules. I
suppose it's a matter of being intelligently positive and avoiding mindless coercion.350

Team structure
Everybody in a team knows the people to approach with suggestions or difficulties.
One of the important characteristics of being a founder member or driver, is redirecting
such queries that come to you (because you're well known as 'knowing what to do') by
introducing people so they can talk directly. There should be at least one facilitator and
you should have the skills and contacts for that.

Can everybody play in goal? No. Should everyone be chasing the ball? No. Right then,
at any one time different people will be doing different jobs. In a programming colony
there's the traditional way of doing this, pretty much along the lines of various sorts of
programmers all doing programming and chipping in their specialisations and the racy,
avant garde way (that's been around since Fred Brookes described it in 1975 - See
Books¤) where coders are outnumbered by the other people in a team who support
these lead programmers and make the whole product. You can think of it like airline
pilots who drive and command the plane supported by other staff on the plane, or as
Brooks describes it as Chief and Assistant surgeons supported by well organised
specialist assistants in an operating theatre.351 The mythical man month is essential
reading which should be a revelation.

Leading a team
The official post of Team Leader is often just 'senior programmer'. If you're not careful
you end up with grumbling responsibilities and tedious administration without the
power to do anything. If you've evolved into a team leading niche you have the power
that comes from respect and shared experiences without the administrative chores.

Similarly don't get conned into an administrative role especially chairing or facilitating
a committee or working party. That's what low level managers are for. The
consequences of eschewing committees and building teams is that you have a more
efficient parallel communications network which is capable of triggering helpful actions
in a very short time. "Hi Sue. Would you mind if we reversed the ...".

The grief from being a real team leader comes when a whole team develops a different
view of things to the management. "We don't care. Our holidays are booked. Not our
problem. The management should have thought of that before rescheduling." At this
point you, personally, are seen as 'the problem' and management goes behind your back
to try and divide the team up.

Why not be a manager?
You'll have seen enough managers to know that the entrance qualifications are not very

Programming Version 0.4 Page 280 of 356

352 Why are there all those Management for idiots, and Management in 15 seconds books?

353 This doesn't mean be a boring old fart, but it does mean being trustworthy.

354 One of the names in the Internet hall of fame.

demanding352. Have a look in the glossary for OM¤ and Factors¤ which are two basic
tools which should remove any remaining mystique.

At age 45 brains start to slow down and the experience that comes with maturity
should be the natural prompt for a move into management. If you have problem solving
skills, vision and decent technical knowledge (which you should as a RP) and if you
have proven team building skills then shouldn't you be in charge? A lot of very skilled
people ask themselves the question then decide against joining the existing
management because of the meetings, politics and pressures involved. As a result they
leave to set up their own businesses and be their own boss, or retire early having made
a nice wage in the meantime.

Large organisations should be worried about this loss of highly competent people.
There's very little cross-over between the commandos and base-wallahs which applies
at all ages - although there is a suspicion that failed programmers find comfortable
management billets.

Can you avoid being a manager?
But what about the new dawn of remote collaboration? If you want to work your own
hours at home then you need a good helping of team awareness and understanding
what management needs from you. Essentials are:
• Writing clear reports. Also judge the scale of the work: Should that be a "Yes OK"

email, a paragraph or two, a page or two, or ten pages?
• Be extremely well organised
• Keep ahead of deadlines
• Keep the need for people to contact you to the minimum. Try to get things right

first time. Discourage last-minute kerfuffles which might interfere with your days
sailing etc.

• Demonstrate your good self discipline to others.353 Maintain your reputation for
doing what you've said you'll do. (Even if it's only an apperance.)

I've bored you with management so you can spot management related issues, then
experiment with management related opportunities. How do you deliver projects where
the participants rarely, if ever see each other? It can be done as Linux and Firefox
prove. At the time of writing there is very little experience around of a management
model. The Cathedral and the Bazaar is an essay by Eric S. Raymond354 available on-
line as an essay or with others as a printed book of the same name.

The team you can't see
When asked "Who are the people you work with?" most programmers forget to include
users. Oh dear. Programmers can be very self-centred and easily fall into the trap of
believing their views must be superior to the users - almost by definition. (This is

Programming Version 0.4 Page 281 of 356

355 And managers retreat into their business world.

356 If you go back to the first couple of chapters you'll see how 'ridiculously tedious' and
'unnecessarily basic' they appear. The good news is that any bits of this book that appear
hazy should eventually appear as 'obvious'. The bad news is that they'll be obvious to you
but not to others and you'll have to persuade them to read the book for themselves.

357 Animated walk-throughs look pretty, require no effort on the part of the user but tend to
cover lots of whats at different levels which confuses. If the purpose of the presentation is
to show how easy it is to do foo, or just to name the elements then that's fine but trying to
mix a bit of everything without focussing on one purpose will be a pretty mess.

particularly noticeable where geeks retreat into their technological world.)355

So you as a RP, interested in people, recognising that if you 'do a good job' you'll be
asked back to do another, realising that users are not 'up to speed' in how to sort their
problems out take the time to find out what they say they want, what they actually
need, advise and liaise during development. Job done - All down the pub for a drink?

Err... No. What about the users that actually use your program. There may be
thousands, all over the world, some may not even be born yet! There will be a mix of
cultural backgrounds for example Windows/Linux or BASIC/Lisp/Java or
Bookkeeping/Finance or Retail/Wholesale. There will be the full range of personalities,
from those that won't read the manual on principle through to those that evaluate
software by the number of help screens, hints, tips and cartoons. Some people will
spend the necessary time working to find 80% of the features and follow the tutorials
while others need it to work within three minutes without any thought or they give up.
So, they give up and call the help line with unbelievably stupid questions.

When you're World President you will be able to control the User Environment and User
Motivation as well as the User Interface. Until then you've got to make assumptions
and cover most bases. This is an imperfect art.

User documentation basics
Users are not necessarily stupid, but almost by definition - they wouldn't be reading the
documentation if they knew the answers - ignorant. This book starts at a point most
people in computing might think of as far too simple.356 There's not much harm done in
that; in fact people like to see things in writing they have picked-up already.

Where you are documenting procedures that involve your program you have the
problem of keeping the version of the user documentation in step with the development
of the program. This is mighty tricky in itself and gets worse if you have, say, a user
guide, a tutorial, an animated walk-through357 and reference on the documentation side
and various versions of your application on the other. The difficulty is that there is no
formal linkage between your code and the usage instructions. There are some ways to

General purpose advice for any user documentation:
Distinguish between the What it does and How to make it do what
the user is trying to do.

Programming Version 0.4 Page 282 of 356

358 You might assume that medical professionals would write clearly and in the right box
even when you make it 'impossible' for there to be a mistake by having a form checked. So
did I. When the procedure was computerised there were squeals of complaint when they
couldn't put anything in the conclusions box without something in the observations box.

359 Such as the way Beginner has been used in this book. You might consider using the
Beginner-ish style for your instructions-to-users. (There is no formal syntax - It'll work so
long as it looks different and formal.)

ease the problem:
• Write the documentation first and build your code up to it. (This is very difficult

when at the design stage you haven't got anything to show and the documentation
will be have to be adapted.) In this way the code can be linked to the
documentation:
// 5.6 : Creating a new user account
// **
// Validate users credentials - [D] Assumed!! admin user
// Display blank input screen [D] Screen shot 5.6.1
// Validate input - [D] Table of allowed inputs
// Trigger follow up actions - [D] Not clear in user guide
// **
I've never done this from scratch although writing the user guide after code has
made me look again at the UI. My suggestion is that you try writing a user guide
draft after the Proof Of Concept stage, before the head-down coding, and use it as a
specification for the UI. If you've been given a formal specification to code which
will have any sort of UI then it might help to attempt the UI first as part of
discovering what the program is all about.

• As well as What and How there's a When. When could be called 'What-if'.
When the red light comes on ...
If the message "foo" appears ...
When the defaults settings are not to your taste...

• Distinguish different levels of How. For example there will be main tasks,
supplementary tasks, ubiquitous operations (eg standard keystrokes) and assumed
skills.358 Often the last two of these are dealt with first to get common activities out
of the way.

• What comes in different flavours as well. Overall purpose and capabilities, main
items, subsidiary features, arcane features and specifications.

• You don't need to keep the What physically separate from the How but you must
distinguish clearly between them. For example you could have a table with
objectives in the left column and methods in the right, or use the FAQ style, or
indicate procedures by typographic and layout means.359

• Normally user documentation employs a undirected language such as "Keep out of
direct sunlight". (This book uses a different style - talking directly to you as if
you're in the room with me.) Sometimes you may want to make a situation the user
might be in
• particular to them "... your preferences..."
• more immediate "... you must not...", "If you find..."
If you're good you'll be able to get other ideas across such as "We can't afford a
mistake at this stage".

In my view one of the most important goals of an application is to
make it easy for people to be diligent. If you're writing a clerical
protocol to go with your program then, for example, how accurate
should the input figures be? If you don't tell them they don't know. If
they appreciate the purpose of accuracy then there's some hope they
might make the appropriate effort. If you make it easier for then to
do the job the right way instead of the wrong way there's some hope
of reducing errors.

Programming Version 0.4 Page 283 of 356

360 Many programmers are good at unstructured learning but generally it's a disaster.

361 Which means you need to have researched what the users want. It might be reassurance
of nothing bad or 'difficult', or promises of benefits. Don't be shy, do some selling.

• Here is a simple checklist you can use to evaluate the first few pages of your
documentation. The first page (don't forget this could be a web page) is extremely
important in encouraging users to make the effort to read more.
• Can the user do something, quickly?
• Can the user do something easily?
• Does the user know how much gold is in the pot at the end of the rainbow?

That is why should they bother with wading through all this writing?
These three can often be dealt with by a walk-through of a 'here's one I did earlier'.
Possibly starting with the finished article and working backwards. For written
documentation of a private business system consider an encouraging foreword by
the managing director which puts the effort of getting used to the new system into
the context of the benefits all round.
• Is it obvious that learning and understanding comes in stages? Many

applications make the mistake of having lots of help screens and other on-
screen pages but there's no structure or 'way in'. For written documentation a
contents page and section numbering give a clue in this direction.360

• Always put what the user wants to know at the start361. What they need to know
next with may be useful following. A review/glossary/index/quick reference often
goes at the back.

• Obviously, use the user's language. Where a term is used in particular way
(perhaps your program has caused something that was vague to be structured and
so names for data items need to be clarified) then you'll have to make sure three
times over this message gets across:
1 A definition
2 How this is different (and why) from traditional use
3 Deprecation of traditional use

Testing
• Again and again. You'll be amazed at what people find difficult or confusing. Just

because one person finds a difficulty doesn't mean going back to the drawing
board. Learning is by it's very nature difficult.

• Try to give out documentation before letting the user-tester look at the program.
This lets them evaluate the approach, style and structure separately from the 'click
here to do this' bits.

• Make sure you get proper feedback.

Programming Version 0.4 Page 284 of 356

362 The quality, quantity and choice of communications is a huge segment of systems
analysis. That's beyond the scope of this book, although as you may have gathered you
need to have some idea of the real world context in which your program will live.

Review
Communicating with humans is an essential skill. Most people are not programmers
and view you as an expensive nuisance. If you're not relevant to them you won't get
their cooperation.362 Writing has to be clear and purposeful - This takes practice.
Talking needs to observe the social conventions that make for fluency. - This takes
practice and benefits from preparation.

Self management is something you'll need as a matter of course. The more you do it
yourself the less you'll be pestered and the more you'll be respected as competent under
pressure.

You may be the person best qualified to build teams. You find out who are the people
you can trust and those that consistently fail to meet expectation. In the first instance
your objective is to reduce arguing time and increase problem solving time. As you get
more experienced you should find yourself encouraging members to take more active
roles and the team will 'take-off'.

Team and business management may not be for you. Take note of the anti-bullying
remarks earlier in the chapter to insulate yourself from management pressure and
politics.

You will have to deal with lots of people and organisations many of which do not share
your views. Many you can educate using charm, authority and simple teaching
techniques, but you'll come across some hard cases where you need to walk away and
leave them to stew in their own juices.

Although computer programming can be a
fascinating intellectual exercise, that's
nothing when compared to the challenge
posed by real people in real situations.

Start with the person called you.

Programming Version 0.4 Page 285 of 356

19. Review

I'm looking backwards over thirty years of trial and error, progress and development,
investigation and achievement somehow condensed into these few pages. You're
looking forwards to expanding what you've just read into another thirty years of top-
level challenges.

The best way to review the content of this book is to read it again. You'll be able to
whizz through the early chapters possibly thinking critically about the content and
style. If there were early exercises you struggled with originally you might want to have
another go to prove to yourself how much you've progressed. The later chapters have
more prompts to investigate the computer science related aspects of programming
which you do need to follow up so you know what sort of mental models and
technology (not to mention fashions) are available for your use if applicable.

Of course you'll be developing your fluency with YCPL and continuing to experiment
with development environments and tools. When I was working full time nine-to-five I
tried to put aside Friday afternoon for private investigations - As a result productivity
doubled every four months.

If you take the view that programming begins and ends with writing code then you will
not make a good programmer. It's not technology that's important, it's not showing off
with complex code that's important but the utility of the end result.

Chapter 14 should have given you an insight into how good code is developed. There
are lots of items in that chapter that require you to
• appreciate how they fit into the whole scheme
• decide how you're going to implement them.
Chapter 14 is not a works-out-of-the-box coding technique but a pattern that you will
develop according to your own circumstances. It might be a good idea to run through it
checking for bits that you should be implementing, listing them and getting down to
building your own workshop and workshop manual.

If you're intelligent enough to be an ordinary programmer then you should have what it
takes to join the elite. Many fail by concentrating on screen-related activities instead of
the real world. It will take years of serious training, re-focussing and continued
application to become a great programmer - but you're already facing in the right
direction, and you've got the first few steps mapped out for you - which is more than
can be said for many.

I hope you've picked up some of the fun of problem solving, the enjoyment of learning
new things every day, and the satisfaction that comes from doing a job better than
others. Good luck.

Parting thoughts

Programming Version 0.4 Page 286 of 356

363 But the occasional rabbit out of the hat won't go amiss and is very satisfying.

• Design is the creative bit. Errors get lost (bad thing) in the fuzz.
Coding is the precision bit. Errors should stand out.

• There are two ways to be a useless programmer: The first is to forget to see the
real world in which your code runs. The second is to fool yourself you can do it
without a method.

• There are plenty of ways to be an inefficient programmer. The most serious is to let
others tell you what to do.

X-Ray vision
A few days ago I explained to a lady who was trying to bamboozle me with spiritualism
that "I could see through brick walls" because that was my profession. Water off a
ducks back in this case... ...and I suspect you'll get the same response.

But you can!

Metaphorically.

Just as physics shows how molecules and masses and waves work to beam a concert
from California to Crewe, and economics shows us why somebody bothered to send
samples from Santiago to Salford, so practising real programming shows you how
people really think, what their agenda is despite what they claim - even if you ask them
directly.

If you can differentiate what people say from what they think from what they do then
you can become a modern day priest.
• People will interpret your good listening skills as evidence of your natural goodness

and trustworthiness
• You will be able to put people's troubles into context.
• Although they know you can't work miracles 363- nevertheless they have faith in

your abilities and admiration for the unfathomable difficulties you have to deal with
on their behalf.

Postscript
Isn't it wonderful to be human after hours of rigorous development, cynical nodding and
creative problem solving.

The price of WCPGW...
Sorry to say, but all the "WCPCW" references were originally spelt "WCPGR". How
embarrassing is that! Let that be a warning that you can spend a couple of months
blissfully unaware of a stupidity that's staring you in the face.

Programming Version 0.4 Page 287 of 356

...is worth paying
As late one night I invented the word "Iterature" to mean:

Literature in the scientific sense, meaning published papers, on the Internet. As in
"Go and have Google for the Iterature on the subject"

Programming Version 0.4 Page 288 of 356

Glossary

Programming Version 0.4 Page 289 of 356

<A
*nix
Unix, Linux and variants.

@@@
Tag in code that says "must come back here later to finish-off". You can use any
arbitrary string so long as you always stick to that one string. You can use it in any
electronic document you're working on, and of course search for it to see what loose
ends are still outstanding. @@@[T][D]

A
Algorithms
I don't want to duplicate the excellent references easily available on the Internet, for
example Wikipedia, so this is a short entry. At one time algorithms were seen as
essential study for programming. Nowadays the mainstream programmer should be
able to get by with a general knowledge of standard algorithms and a recognition of the
old adage 'there's many a slip twixt cup and lip'. See chapter @@@.

Array
Indexable list of elements. In general, exceptions apply, arrays are dimensioned to be a
fixed size. Say 12 months of the year. There are gotchas:
• Many systems use 0 for the first index which can be strange to people used to

things starting at 1. This also means that the highest valid index for an array of 12
elements is 11.

• Sometimes a programmer will dimension an array 'with room to spare'. "20 will be
ample for the number of live bug reports"...and so it was until one day it wasn't
...which meant another bug report ... and so to meltdown. See constants¤.

Dynamic arrays and vectors¤ get round the issue of fixed size.

Assembler
Assembler code is a 'readable' version of the lowest level processor instructions. An
assembler is a compiler which turns this text file into machine code.

Programming Version 0.4 Page 290 of 356

B
BGB
Bad-Good-Best model of competence. See appendix G.

Books
You can learn a lot from the Internet but there are some books well worth a good read
which will alter your whole outlook. Wikipedia has a good book review section.

The Mythical Man-Month: Essays on Software Engineering
Author: Fred Brooks. First pub: 1975 and 1995
This is a classic about the management of software projects. Amongst other useful and
insightful things it contains:
• Adding manpower to a late software project makes it later. (Brook's law)
• The over-design that goes into somebody's second system (2nd system effect)
• The system architect should write the manual (draft but in detail) as the

specification for the software developers.
• The first attempt will be a prototype whether you intend it or not.
• Surround a couple of really good programmers, which he estimates are 5-10 times

as productive as the average) with a team that supports their work with tools,
testing, admin and so on. He likens this to a surgical team.

Security Engineering
Author: Ross Anderson ISBN 0471389226
A wide view of security engineering including computer security. As well as being an
excellent introduction to security techniques and ideas, it really highlights the practical
difficulties and is a feast of WCPGW. Essential reading.

Programming Pearls
Author Jon Bentley ISBN 0201657880.
Key programming techniques to go into your brain. Lots of case studies which highlight
the role of creativity and insight. It covers program design and coding and will show
you why some programmers are so much better than others.

Brittle code
Liable to break either due to confused coding or age. A bad thing which you'll learn
about when making minor alterations that cause melt-down, expose old bugs or
introduce new ones. As your tools evolve over time and people who understood how
the code was glued together move on so your development environment can be a
contributory factor. See Legacy Code.

Bug
A bug is a fault lurking in a program. Like flu, the symptoms are unpleasant, may strike

Programming Version 0.4 Page 291 of 356

364 They are saying you're not sufficiently paranoid. By the way, it's not a question of
'conspiracy or cockup' but 'conspiracy and cockup'. Shields up!

anywhere and be easy to spot, but the cause is invisible to the naked eye and nobody
knows where it came from. Although there is plenty of advice, scientists haven't yet
found the cure.

Bug-free code
A myth.

C
C
An incredibly influential programming language which gave programmers the right mix
of efficient use of a machine at low level with high-level language features. At one time
C was ubiquitous and available on just about any platform. This made it the language
of choice for a lot of people and companies. Nowadays you'd need a very good reason
for learning it.

Can never happen
But you'd be surprised how often it does.

This comment is often seen in code, and as a signed-up member of the WCPGW club
you'll understand why. We're not talking improbable or unlikely but impossible. Being
a defensive programmer you may not trap impossible errors but from time to time you
will comment your code to explain that a particular logic branch can't happen because
you validated-out all the loopy options or possibly the data feed you've been given is
specified with certain restrictions and you check those restrictions.

if ((month>0) and (month<13)){
 ...process normally...
}else{
 Die('invalid month'); // can never happen
}

This isn't paranoia364, just the real world being its normal self.

Case(1)
UPPER CASE, lower case, Mixed Case, CamelCase. See Crash Case¤

Case(2)
Synonymous with the switch logic construct which performs one of a multiple choice
set of options. Read YCPLs documentation for gotcha¤

CASE(3)
Computer Aided Software Engineering. If you listen to some people CASE is a utopia
where requirements are typed into the a computer which then produces finished,

Programming Version 0.4 Page 292 of 356

tested, documented and optimised code. It is fairer to say that since the dawn of
computing software engineers have recognised that computers can help them produce
better software faster and cheaper, and a lot of effort goes into rationalising the design
and manufacturing processes. Even if the integration of tools was perfect they would
still be expensive to buy, expensive to install and maintain, require a lot of training and
have to be kept alive long after the last new bit of software came off the production line.
Tools are a brilliant way to improve productivity but in my opinion, as discussed in
chapter @@@ we are not at the integrated production line stage yet.

As a programmer you need to be aware of what sort of facilities are available and
'waste' some time getting hands-on experience to find out for yourself (a) what the
practicalities are and (b) how you might implement the ideas behind the tools in other
ways.

Code
• To To sit at a screen typing in a computer language.
• Source What the programmer typed
• Object What the compiler produces (almost) ready for the computer's

processor (or virtual machine¤) to run.
• Executable Immediately runnable object code
• Pseudo Outline sketch of how the final source code would work

Champion
A powerful person who shares you vision and is able to make change happen even
against opposition. Rare. Many projects will end in failure because there isn't a
champion to provide leadership and face-down the moaning-minnies and fatal-
compromisers. At the start of every project ask yourself:
• Who cares enough about it?
• Who understands what will make it a success?
• Who has the power to make it happen?
• If the going gets sticky who will see it through?
If there's the risk of confusion, objection, change of policy or interference and you can't
answer these questions then look around for something more worthwhile.

Collection
A generic term for a data structure. Common derivatives are
• bag - duplicates allowed
• set - only one of each item
• array, vector - linear list
• dictionary - keyed list
• hash table - specialised form of dictionary
• linked list - items chained together
• tree - multi-level linked lists (or lists of lists)
Many OO languages come with a class hierarchy which allows you to call collection
methods such as enumeration, store and retrieve without worrying about the exact
implementation.

Command line

Programming Version 0.4 Page 293 of 356

Text interface through which commands can be typed. A Command Line Interface
requires knowledge and keyboard skills to use. CLI may not be fashionable but for
many aspects of programming it is very practical. See chapter @@@

Comments
Comment-free code belongs in the bin. Follow local style or develop your own. Firstly
automated tools may be used to extract certain comments to save doubly documenting
your code. Secondly you and your colleagues need various levels of pointers to the
workings, assumptions and tricky bits. Thirdly you can use comments to tag your code
during work-in-progress either as reminders or a handy place to put associated
information such as parameters to test with until you get round to that phase.

Compiler
A program that converts source code into object code. See code¤. See appendix E.

Computer Science
Computer scientists like to deal with the How-do-they-work of computers. Software
engineers (ie programmers) follow the creed of What-can-we-do with computers. The
former is easier to teach being a collection of techniques which students can be asked
to enumerate and master while programming is more fuzzy and can't be learnt from a
book.

Programmers need to know something of computer science but there are arcane areas
that are far less important than hours and hours spent practising the art of writing the
right program. In my opinion a good programmer will explore available technologies to
the extent of knowing what they may do then salting this concept away for future
reference. Knowing in the back of your mind that there might be a clever way to tackle
the knotty problem in front of you, and knowing where to look, are the key skills.

Console
A console is derived from Teletypes and later VDU terminals which controlled a
program (including the operating system) by sending and receiving characters 'down a
wire'. (Modern systems paint a whole screen and have built-in keyboard and mouse
handling.)

Originally most programs worked by receiving characters typed at the keyboard via a
port¤ typically given a system name such as TTY: and displaying progress, or results by
sending characters back to TTY: (TTY being short for 'Teletype'.) (CON: SCR: KBD: are
some of the variations on this port naming theme.) Nowadays if you want to receive
from the 'console keyboard' you'd probably read StdIn and conversely write to StdOut.

There are a lot of programs that still use a console for I/O¤ because
(a) You can operate them from the command line
(b) StdIn and StdOut are just about universal and simple
(c) You can operate them remotely. eg by Telnet¤
(d) You can make really tiny programs uncluttered by display gubbins
(e) StdIn and StdOut can be used to talk to the StdOuts and StdIns of other programs

Programming Version 0.4 Page 294 of 356

Conspicuous relaxation
One of the privileges of being a Real Programmer is self-organised total rest periods.
Others don't have the mental strength to stop completely, they bumble along making
distracting interruptions and trying to look busy while gazing out of the window. As a
mental athlete you can knock the spots off them any time you like, that's why you're
well paid... ...except it can't be done for hours and days on end. See Nervous
Exhaustion¤

Crash case
To force all characters in a string to either upper or lower case.

CSV
Comma Separated Variable text file format. This is the
original classic data transfer format with one record per line
and fields separated by commas. It is simple and practical
for basic data types that can be represented as text. If you
need to get data out of or into a spreadsheet you can
probably use this without any worries.
• Don't use for binary data!
• WCPGW? Put strings in double quotes if there's any chance of a comma appearing

within the string. WCPGW? Even within all strings being quoted you forget to
check for comma-within-quotes gotcha.

D
Dates
It may surprise you that many programming languages do not automatically support
the following dates:

"1066" or "2006"
"May 1999"
"1st June 1676"
"Unknown"

And many others.

Dates depend on two things: The facilities provided to the language by the operating
system and the features provided by the language itself. This raises platform-specific
issues¤. See appendix D.

Development environment
Your workbench and office in both real and virtual senses. You won't be a good
programmer unless this is well organised and suited to the work you're doing. If you
don't have the right tools or are being interrupted in the middle of head-down coding
sessions then productivity and accuracy will drop off and you won't be happy.

North,2,Spades,,
South,4,Spades,,
West,,,Double

Programming Version 0.4 Page 295 of 356

365 Do something about it if you're not happy.

On the other hand with the right tools, the right physical environment365 and good team
work you can work at five times the average pace.

E
Enumeration
Working through the items in a collection¤. Typically starting at the first item and
repeatedly fetching the next until the end

Error
A fault of any sort. It is the programmer's job to prevent errors happening in the first
place and to deal with any consequences of lurking faults.

Exception
The recognition of an exceptional situation that arises while a program is running. This
could be a division by zero or exceeding the time allowed waiting for a response. The
good programmer will plan for such events and have worked out what action to take as
a result.
• Exceptions propagate up the calling stack and may be caught at any stage...
• ...unless there is no catching when the program crashes or does some other rude

thing, possibly causing invisible damage that lurks to affect something else.
• The programmer can decide what action to take and where it's most appropriate.
• A frequent task is to ensure a clean-up always happens.

F
Factors
Back of the envelope project pre-planning tool. See APPX@@@

Fencepost error

Filename
Name used to identify a file. Source of Gotchas¤.
• On a Windows system MyFile.Txt and myfile.txt refer to the same thing, but on

a *nix¤ system case matters so they are different entities. The Gotcha is that your
program might work fine while you develop on your windows machine as you refer
to "myfile.txt" but fail to find it when ported¤ to another system. A classic case is a

Programming Version 0.4 Page 296 of 356

366 Ta very much Microsoft for calling the root for programs "program files" - not.

web page with the code with MyPicture.jpg being
uploaded.

• *nix¤ filenames beginning with a period do not appear in normal directory listings.
• Some people are in the dreadful habit of putting spaces in the middle of file names.

Bad bad bad!366 Space is often used as a delimiter to split arguments such as on a
command line. If you give my naughty file.txt to a command line program it
will probably think you meant just the file "my" or possibly "my" and "Naughty" and
"file.txt". Tip: Work out a filenaming convention that doesn't involve spaces (or
minuses or extra periods) How about MySpaceFreeFile.txt. Then stick to it.

• If you are generating file names for log files arrange them so that the year is first
then the month then the day. This makes sorting them a lot easier - providing you
don't forget padding with zeroes as required.

• Watch out for alias extensions such as foo.htm and foo.html
• Slash(/) is used on *nix¤ systems as a path separator while Windows used

Backslash (\). Especially over the phone, this wart can be invisible.
• Personally I abhor filenames without extensions. What program should I be using

to look at "design"? - Or is it a program in its own right?

Formatting output
In a GUI or if you are outputting HTML then your formatting methods for layout and
general presentation will be quite complex. However for plain text as well as these you
will probably want to format numbers so that for example they have exactly two
decimal places. See printf¤.

For values of...
Hackish way of indicating that some given number, statistic or even boolean is not to
be taken at face value. It can be used for "insert any of your favourite values here" or as
a polite way of saying "bollocks" when someone gives you a 'fact'. "We always deliver on
time" ... "For values of 'always' ".

A witticism to bore people with: Pi equals 3 for small values of pi and large values of 3.

Framework

Fudge
Almost a programming language which shouldn't need much conversion to YCPL. (I
use it here because I don't know what YCPL is. Normally use real code or pseudo
code.¤)

Programming Version 0.4 Page 297 of 356

G
Garbage collection

Gotcha
A trap. For example mixing = and ==. Although gotchas are generally documented
they can cause baffling errors - some of which might stay dormant. A typical scenario
os where you 'upgrade' to a later version of a programming language, and the things
you could do quite happily before are now falling on their faces. You haven't changed
anything... ...probably - but can you be sure since the last time you tested it. The other
common scenario is where you switch from one language or dialect to another.
Perhaps in the on you've been using you can guarantee that uninitialised variables will
always be zero, false or null but now you should do the initilisation explicitly. See
Scope¤ and Filename¤ for examples.

Grep
Hacker-speak for search. The name of a widely used utility program for searching (and
replacing).

H
Hack(1)
Quickly whip up a solution

Hack(2)
A practical rather than pretty patch to a system.

Hack(3)
(As in 'hack into') Find a way round security or modify maliciously.

Hacker(1)
An elite programmer that could demonstrate superior technical knowledge and extreme
ingenuity to get a quart out of a pint pot, without spilling a drop, and only paying for
the pint. Always rare, now almost extinct.

Hacker(2)
Nowadays "Hacker" usually refers to a programmer-gone-wrong.

Hexadecimal
See example in Type¤

Programming Version 0.4 Page 298 of 356

367 But the word is so boring and does nothing to convey the hidden power of something that
should be one of the sharpest tools in your kit.

Hex Editor
An editor that lets you look at (and if you're clever, edit) raw bytes in a file. Normally
the screen will be in three columns: Address offset from the top of the file, 16 bytes
shown in two digit hexadecimals, and an ACSII¤ representation.

Hot tap - Cold tap
Something you know but are not conscious of. Taps (in the UK at least) are always
arranged

H C
Hot on the left, Cold on the right. Not many people ever think about it. That's the
whole point. Humans quickly learn to use patterns to indicate shortcuts. The more
usual label for this is Conventions.367
• code conventions
• private conventions
• user interfaces
• user guides and other communications

I
IDE - Integrated development environment
A programmers workbench which combines, one hopes seamlessly, a number of tools.
Strangely enough this may be part of your development environment.¤ IDEs are often
purely coding environments rather than supporting the full scope of development tools.

Idempotent
Only ever happening once. For example if a user tries to access a function for which
they need permission a check will be made to see if they are logged-in. If not then the
login process is kicked off. But once they're logged-in they don't need to do that
diversion again.

Inter-personal skills
Good interpersonal skills are a requirement for good programming. You can learn them
from books and are worth practising if you're shy, don't know how to talk to people, and
people don't know how to talk to you. See chapter 18.
• Programmers can be a bit blunt as babble isn't their forte. If you think about it all

they're really interested in is the shortest line from A to B and may be streets ahead
when considering some matter under discussion. Waiting while other people beat
about the bush, go off at tangents and get hopelessly lost is just one of those things
you have to get used to. Look upon coaxing them back onto track as an interesting

Programming Version 0.4 Page 299 of 356

368 This word was created during a long late-night writing session for this book.

369 When finishing a job where you've been given access to private areas, make a point of
'handing back the keys'. This might mean telling the system administrator that it would
be best for everyone if your user account was disabled. Or you might want formal written
permission to retain client's data for specified purposes and under certain guaranteed
conditions.

intellectual challenge.

Iterature
Formal documentation found on the Internet. As in "Go and look at the iterature".368

J
Jailhouse
There are legal issues with programming. Don't go hacking other people's systems is an
obvious one. The details of licences for the use and re-distribution of software are best
left to others. You may have privileged access to customer's data which raises issues of
commercial confidentiality and personal privacy.369

The scariest moment I've had was when I became certain that a colleague was involved
in hacking. Eventually proof was found, but for 48 hours it was just my strong hunch
that triggered all sorts of hairy security activity. OK, I could give good reasons for the
alert but it would have been distinctly embarrassing if the case was not proven. The
moral of the story is that you need to be very careful and very sure and very delicate in
how you 'alert the authorities'. (That's ODA¤ in practice.)

K
K
Prefix for units of 1024. Also 1000 or 1000-ish. (Using k to replace a decimal point as in
6k2 for 6,200 is standard in electronics but a bit of an affectation in computing.)
• M is K K's (For values of K)
• G is K M's (For values of K)
• T is K G's (For values of K)
• Stick to upper case Ks, Ms, Gs and Ts in computing. ("m" indicates 1000th)
• 10 bits are required to express 1024 possibilities.

Programming Version 0.4 Page 300 of 356

L
Legacy code
Old code that can't just be thrown away because it is still in use, even of only
occasionally. There is an interesting trade-off between patching from time to time and
completely re-writing in your personally preferred, ahem - a more modern and efficient
language. It is a real bore to look after but many times there will be one application for
which old hardware and operating systems are kept going for because nobody is quite
comfortable with the upheaval that could ensue. Another reason is perhaps it was
designed as a robust system by true professionals and the currently available skills
don't inspire the same confidence.

M
Management anger therapy
Some stupid managers only take notice when you get cross with them. Don't play this
card unless you have a handful of trumps. Give them an early opportunity to back
down before you lay into them. Public MAT has the most therapeutic value. Best done
on a Friday afternoon. Make sure the ball gets left in the manager's court. "I'll be in my
office if you need me!" Never apologise.

N
Nervous exhaustion
This is a real danger. Real programmers need to be mentally fit and need to know how
to pace themselves and work efficiently. Rest periods are absolutely necessary.
Performance will vary from day to day. Having read chapter 18 you'll be taking
relaxation seriously, but watch out for signs of stress in colleagues.

Newline
For historical reasons there is a confusion between the control characters CR and LF.
For example, Line feed physically moved the paper in a Teletype down one line but
didn't move the print head to the left, for which Carriage Return was needed. LF then
CR would have the same effect (but more slowly on a Teletype¤). Then some engineers
thought it would be a good wheeze to just use LF at the end of each line and hack that
into CR+LF at the terminal end. Which is fine unless you mix feeds with CR+LF and
LF alone.

Programming Version 0.4 Page 301 of 356

370 Although the Ctrl+Z character was often used at the end of a file.

371 Until reviewing this entry it didn't occur to me that I should specify this as a paper-based
device not a battery powered one. The permanence of paper and the ease of sketching
make it the medium of choice. (Cheaper and less nickable too.)

• "Newline" means either LF or CR+LF
• "End of line" is a mythical character370

• *nix environments tend to be LF-only
• Windows environments tend to be CR+LF
Research ASCII control codes for more.

Notebook
A programmer's badge of office, filing system and lifesaver.371

Nothing's changed!
As in "I haven't changed any code at all" to which the reply is "So it fails just like it did
before then!" Users are just as creative in their use of this phrase as they change their
setup, don't tell you they're trying to print over the network to a different printer, and
different operating system. See also What's changed?

O
ODA
Observation - Decision - Action. These need to be separated for transparent and
auditable decision making. See appendix G.

OM - Objects/Methods
Qualititive project management tool. See appendix H.

P
Passing arguments by reference
There are two ways arguments can be passed to a function or method.
• By value : A copy of the argument is given to the function
• By reference : A pointer to the actual object is passed to the function
Why should you care? Because if you're working on a copy any changes you make will
not be reflected in the original. For example if you were sorting an array by passing it to

Programming Version 0.4 Page 302 of 356

a function you want to make sure it was passed by reference. Most of the time
arguments will be passed by reference by default but there might be cases where you
need to pass by value or some features 'break the rule'. Check documentation.

Parity bit
In the evolution of pulsed telegraphic data transmission and punched paper tape it was
found that sometimes noise on the line or dirty contacts would cause incorrect
characters to be received. So an extra bit was added to each character which might be
set to 1 when the count of the 1s is the other bits was even and 0 when odd. This could
be checked at the receiving end to see if any bits had been corrupted during
transmission. This extra bit is known as the parity bit.

When 7 bits were used for character data the 8th was used for parity. As technology
progressed and equipment became more reliable and other methods were found for
detecting and correcting (parity only detects) bit errors so it was found more useful to
hijack the parity bit for additional characters, symbols and line drawing shapes; more
than doubling the size of the displayable character set.
• Look up Hamming codes for cleverness in computer science.

Pipe
A stream connecting two processes. This can be programmed so that process (or
program) A feeds bytes into the pipe and process(or program) B catches them. This can
happen asynchronously. See chapter @@@. Programs that use StdIn and StdOut
ports can be joined together on an operating system's command line so that the StdOut
of one gets fed into the StdIn of the next. You might see something like the following

>dir | find "EXE" | sort
where a directory listing is piped to the find program which only passes lines
containing EXE to the sort program which sends its results to the screen.

Platform
Term used to describe the foundation environment in which a program runs. This may
refer to hardware (particularly processor), operating system or both. For example the
"*nix platform".

Platform-specific issues
Wouldn't it be nice to write a program that everyone in the world could run?
Unfortunately different computers work in different ways. The first level of
incompatibility is hardware and operating system.

The second is the amount of resources available. For example your shoot-em-up game
might need to come in two versions, one for those people with high-power graphics
cards and another for those with lesser hardware.

One of the major problems is remembering that other users will have different display
resolutions. You have to test a range of resolutions and design a working compromise.
I have to admit to some gaffes on this front.

Pointer
An location in memory where an object or data item can be found. A horrible source of

Programming Version 0.4 Page 303 of 356

bugs in those languages that allow you to use them.

Port(1)
To port something is to get it to work on another platform or rewrite in a different
language or dialect.

Port(2)
A named I/O¤ connection. For example TTY - to a VDU console, LPT: to a line printer
(or any printer). Port names are operating system dependent. They also require the
appropriate hardware or emulator¤. From a programming point of view ports are
always used with serial byte/character data such as can be represented by a Stream¤

Port(3)
A sort of sub-address of an IP address. It works like telephone extensions do. For
example web servers tend to 'listen' on port 8080 or 80 and so that's where your browser
tries to contact. In real-life terms that's like all companies having their sales
department on extension 456. Ports in this sense operate in the port(2) sense as serial
byte/character channels.

printf()
In C¤ there is a print formatting function called printf on which most number
formatting has been based. You'd use this to strictly control how many digits numbers
have and how much space strings take up. You do this in printf (and similar functions
in other languages are almost identical) by giving the function one 'mask' in the form of
a string which sets out the formatting and then a bunch of variables which are
formatted according to the specifications in the mask. For example:

printf("%d %3s %-2.2d",day,monthName,twodigitYear) says Any number of digits for
an integer. A space. Three characters (always/only) for name of month (truncate if necessary). Another space. An integer

always with two digits, adding a leading zero if required.
Practically all reports need to show a fixed number of decimals and keep strings aligned
and this is what you can use to tidy your display accordingly.

Pseudo code
Sketch code concentrating on what happens leaving out coding details.

Q
Quick and dirty code
A tempting trap. There are often situations where you want to quickly cobble
something together. This comes with certain risks - in particular: making a mess of
existing code, doing it wrong and getting incorrect results, and leaving this lash-up in
the production code. It is definitely a question of more-haste-less-speed.

This isn't to say you shouldn't get stuck into doing small jobs quickly... ... but before you
start to code do three things:

Programming Version 0.4 Page 304 of 356

• Make sure you have a back-out plan if hacking existing code.
• Use some framework of comments such as pseudo code. This will help focus

your mind on the objectives, traps and method overview.
• Put in some @@@s to remind you to do standard housekeeping procedures

afterwards.

R
Real time
A program that operates in real time must deal with inputs as they happen and respond
within a certain time. There are all sorts of issues which are made more pertinent by
the fact that real time systems are often hooked up to expensive and safety critical
equipment. Keep all mediocre programmers away and only work with experienced
managers.

Reassuring noises
Hand-waving, sales brochures, suits¤ making strategic commitments, management
taking you into their confidence, and promises of payment. Anything with "on" as in -
time, -target. Should ring alarm bells.

One of the biggest culprits are programmers who are congenitally optimistic in their
estimates of difficulty, need for resources and performance.

Record
A collection of data items. Often the items are called fields. Although strictly speaking
incorrect, a row of database table or a row of a query result might be referred to as a
record.

Regular expression
Hieroglyphic spells used in pattern matching. An example is given in chapter @@@.
You might use a regular expression to check that some input looks like a properly
formatted email address, or split lines from a log file into component parts.
• You'll need to read the documentation for YCPL very carefully.
• If at all possible look at other people's efforts rather than trying to invent the wheel

from scratch.
• Test, test and test.

Reference

Unless you have a really good reason to think otherwise you should
at least double your estimate of the time it will take to do a project.

90-90 rule: "90% of the project takes 90% of the time - The rest takes
another 90%"

Programming Version 0.4 Page 305 of 356

 A reference is a Pointer¤. See passing arguments by reference¤.

Root(1)
The 'highest' level of the filing system. Normally indicated as a single stroke/slash
depending on operating system. Sometimes this will be "the highest level of the bit
of the filesystem that you can see". It is generally good practice to keep out of the
root and work in sub-directories. Try not to let installers install directories directly
off the root. See appendix F.

Root(2)
Term in *nix environments for the user that has master administrative permissions.
So it is bad news to let just anyone or anything have this level of permission
because then they or it can do whatever they like with the system. This what
hackers are looking to do.

Programmers should try to ensure that their program doesn't need to have
administrator (root) privileges. Often a developer will have lots of access that an
ordinary user won't, or shouldn't have. This can be a source of grief when the
customer can't get the program to work on their site while it works absolutely fine
on yours. Moral: Test with client access permissions before release.

Run-time error
See Exception¤

S
Scope
The range of code in which a given variable name retains its identity.
• Typically variables defined within functions are local to that function and have no

connection with any variable with the same name outside.
• Often for-loop variables are not valid outside the loop...

...but (Gotcha¤) may still be accessible in an undefined state. eg
var j : int;
for(int i=0; i<10;i++){j=i;} // last time i=j=9
if(j==i){ // Gotcha! i may be undefined outside loop

The equality may be allowed by some languages, might always be true in testing
but fail sometime in the future once in a while, or always on another system.

Scribblything
A writing implement.
Your whole business is getting others doing things in new ways. Don't be afraid to
introduce new terms for ideas and float them past people while watching their reaction.
It's an old trick to see who are (a) listening (b) bothered (c) don't like anything new (d)

Programming Version 0.4 Page 306 of 356

372 Actually the people who lap up your jargon and simple to grasp key phrases may be
completely lacking in judgement and even be an embarrassment. Make a note for when
you've got some rubbish you want to sell.

are really (sometimes pathetically) keen372.

Segway
To slide imperceptibly from one thing to another.
• Dangerous if you're trying to focus hard on a difficult thing.
• Dangerous if group attention is being diverted from key matters.
• A useful method of bringing others onto 'your ground' without frightening them.

Mental discipline note:
If you're in design mode then you're quite likely to be skipping between ideas all
the time. That's good But when coding you need to be disciplined and restrict the
items you're juggling in your mind to the absolute minimum number. Leave a
marker to come back to later.

Serialisation
Writing (and reading) a complete object to a stream¤, often a file. The magic is that
objects 'know how to save themselves' and can be reconstructed from a byte stream.
(The diary exercise in chapter 9 illustrates this.)

Sorting
There is a science to choosing an appropriate sorting algorithm¤ and an opportunity for
many mistakes in coding.
• Use ready made facilities if possible
• If rolling your own, research the methods and test the code thoroughly
• If sorting more than a few dozen, items pay attention to the performance issues

Stream
A stream is an abstraction which represents a port¤, buffer¤, file, or pipe¤ as a channel
through which bytes/characters can be sent or received. See Chapter @@@.

Strong typing
Some languages insist you define the type of every variable and function argument and
check that you're not mixing apples and oranges. As well as stopping you from making
silly mistakes the compiler can produce more efficient code.

T
Teletype
An antique terminal with simple mechanical keyboard for input and a roll of paper
bashed by a noisy little drum that popped up and down as it printed one character at a
time across the page. Often the characters were mono-case and always mono-spaced.

Programming Version 0.4 Page 307 of 356

You'd be lucky to get 20 characters per second output. These were brilliant compared to
other ways of programming simply because they were hooked-up on-line via a standard
serial interface so you could write a 10 line program and get the results in five minutes
instead of a day waiting for your job to get punched, chucked out by the compiler,
amended then run (the first time might work but who knows) when the denizens of the
computer room see fit to give it a whirl.
• Teletype terminals always had a bell. There's an ASCII character to ring it 0x07.
• ASCII 0x08, Control-H, written ^H, is backspace. This explains the occasional

message which jokingly lets you see thoughts behind the words. For example: It
will never^H^H^H^H^H be ready by Friday.

Time left
A handy progress indicator if you know how much of a task has been done is

timeLeft = ((amountTotal * timeSoFar) / amountSoFar) - timeSoFar
WCPGW?
• amountSoFar or timeSoFar are zero.
• progress message is not properly cleared when completed.

Type casting
Converting one type into another. This might happen silently and automatically (either
by design or nature of the beast) or you may need to explicitly convert from one type to
another. For example some languages are not keen on you trying to divide one integer
by another in which case you may have to convert the numerator and denominator into
floating point numbers first. Silent casting, which often happens when operators are
trying to do the best they can with arguments, is fertile camouflaged bug country.

Sometimes a similar thing is done with objects. For example you might have an array
object which allows all sorts of object to be added. When you come to retrieve these
objects you may need to tell the code what class of object you're retrieving.

Adding method definition : Add(Object:anObject);
Fetching definition : GetNext(); returns Object
Usage : someFancyObject = new FancyObject();

myArray.Add(someFancyObject); // FO is sub-class of Object
. . .
sfo = (FancyObject)myArray.GetNext(); // cast to FO

Types
Most languages come with a built-in selection of ways of storing numbers and
character strings. These trade-off accuracy, size range, speed of processing and
number of bytes used for storage.
• Integers are characterised by the number of bytes used and whether the number is

signed. Sometimes unsigned integers are called words. It is very easy to mix
signed and unsigned by mistake. If you try to store an excessively large number in
an integer you will get an overflow exception. Bitwise logical operations should be
done on unsigned integers.

• Reals or Floating points are typically available in two flavours single and double
precision. They take longer to process than integers and although accurate enough
for most everyday purposes can occasionally exhibit pathological tendencies if
misused.

Programming Version 0.4 Page 308 of 356

• Booleans are sometimes a separate type and sometimes an integer 'dressed up'.
For the purpose of interfacing with low level APIs some languages will define 8,16
and 32 bit boolean types. See typecasting¤.

• Special values such as 'Not a number', Nul (or Null), may be included within a type
by a testable value or may be types in their own right.

• Characters are single bytes used for alphabetic purposes.
• Null terminated strings are one way of storing a sequence of characters where the

first byte with zero flags the end of the string. Here is "Hello World":
0x48 0x65 0x6c 0x6c 0x6f 0x20 0x57 0x6f 0x72 0x6c 0x00

This form is more often used with system programming and libraries written in C.
When calling a system function requiring a string you'll probably need to use this
style.

• Fixed length strings simply allocate a number of bytes. They are used a lot when
defining records. Some funny things can happen silently if you try to save a string
that's too long to a fixed length string. One possibility is that the string is silently
truncated. Another is that whatever occupies the next bit of memory will get
overwritten - once again silently. This is one of the most common causes of
security flaws called a buffer overflow.

• Variable length strings are fine for working within a program, fine for reading and
writing to text files and streams, but no good for passing to third party libraries or
fixed length records that others should be able to read. They work by having their
length specified at the start followed by the appropriate number of characters.
There are two things to remember:
• There will be some maximum length depending on language
• When sizing storage space you have to leave room for the bytes used to tell the

length.

More exotic types
User-defined types shade off into objects. A crude distinction is that types are just ways
to represent data while objects have methods and the other OO goodness. One use of
user defined types is to package fixed length data fields into a data structure or record.
This might be used for accessing random access files or possibly to allow a lot of data to
be returned (or rather a pointer to it) by a function.

Record gotcha : Often languages will automatically pad-out record structures so that
each new field starts on a 'word boundary' - That is if the last field was specified with
an odd number of bytes an extra one will be added silently. You may be receiving data
that gets garbled because of this. If the documentation is vague, use a hex editor to
view the data directly.

• Date, time, date-time, timestamp are variations that may co-exist in some
languages and may need converting. For example your database will support
dates and times of various types but you may need to present them in a particular
format (full of gotchas) in order to communicate with it from your program.

• Currency is often found as a (non-standard, not transferable) type with the
advantages of a fixed number of decimal places and rounding rules to suit
monetary calculations.

• Exceptions may be offered as a separate type.
• Events may be offered as a distinct type.

Programming Version 0.4 Page 309 of 356

373 Or it might be necessary to take a devious look: List all the tools you have on your
development machine, any one of which failing to work will incapacitate your work, and
say in writing to your boss that you don't think it is a good idea unless the upgrade
supplier will indemnify against all possible scenarios.

• Functions, methods and event handlers may be offered as a distinct type.

U
Unicode
A standard for encoding text that breaks the 255 different character limit imposed by
one-byte-per-character. If your program will be used beyond the English speaking
world then you should be looking into this and making policy decisions as a result.

Upgrade
A traumatic episode that occurs by
• enthusiasm getting the better of experience,
• the need to exchange known fatal bugs by surprise painful ones,
• stealth and subterfuge.

If it's not broken don't fix it! This is a deadly serious subject. Upgrades cause all
manner of grief - often expressed in peculiar ways - often completely clobbering vital
operations.

Warning
• Never be the first to upgrade - let others find the snags
• Research the problems other have had before you follow
• Don't be fooled by the "everybody must be 'standard' cry". That 'standard' will soon

be last years model and you're on an escalator. Take an objective look.373

• Don't be conned by "It's free" - So is a fight with an angry bear
• But all the new features! - So? - Is being able to spell check a spreadsheet in

Swahili worth it?

A rational upgrade strategy is
• to stay aware of the state of play and where it might be leading
• work towards upgrading in your own time
• if possible, have a guineapig
• only upgrade when 'necessary' or 'the major changes' are worth it.

Precautions are
• Always - Always - Yes, Always! have a roll-back strategy and keep it in place for as

long as possible.
• Test all the little used things as well as the obvious.

Programming Version 0.4 Page 310 of 356

374 You might still see Vector used for a plain array. Originally it was the indexed listness
which made a vector. The emphasis on dynamic sizing is a modern usage.

V
Vector
A list or dynamic array.374 The valuable feature of being able to expand if the need
arises comes with some slight overheads of computer time and needing to focus your
mind on precisely what's in the list and how to access items and do housekeeping.

W
Watchdog
Also Watchdog Timer. An alarm that will trip and interrupt sometime in the future
used to catch things that should-have-but-didn't. The object is to prevent infinite loops
or hanging when resources are not available.

Set watchdog timer for 1 minute ahead
try
 loop until connected to database server via network
 WCPGW - Server n/a. Network is a notwork ... HANG!
except
 if watchdog-alarm-exception terminate with message

WCPGW?
What Could Possibly Go Wrong? Just as clocks go 'tick' and cows go 'moo' so
programmers go 'wcpgw?'.

What's changed?
A really good question to ask. If it used to work but doesn't now then something has
changed. Be persistent! See Nothing's changed!¤

Whitespace
One or more non-printing characters.

WOMBAT
Waste Of Money Brains And Time.

X

Programming Version 0.4 Page 311 of 356

x
Used to indicate the following is a hexadecimal number as in xFF or 0xFF.

Y
YCPL
Your chosen programming language.

Z
Zzzz
Meeting on a Friday afternoon. Nobody wants to be there and everyone will have
forgotten the key action points by Monday.

>Z
(See previous entry. Nothing of note happens after Zzzz.)

Programming Version 0.4 Page 312 of 356

375 I did tell you to make sure file extensions were always displayed when using your file
manager.

A. Using Javascript
Javascript is available for free, built-in to every web browser. As a general purpose
language it is very limited and is difficult to debug but just sufficient to run the
exercises in chapter 5. It is important for programming web pages, and being able to
use it for that purpose might be a very useful skill.

The purpose of this appendix is to show you how to program the exercises in chapter 5.
You probably wouldn't use Javascript in everyday web pages in the style described here
and this is not meant to be an 'all you need to know tutorial'.

Development process
1. Create a document using a text editor
2. Save as foo.htm
3. Point your web browser at foo.htm
4. Debug by repeatedly editing foo.htm, saving and clicking refresh on browser.

How to write a HTML document is covered in chapter 2. What that didn't cover was
how to include a block of Javascript. Here is the first Hello World code:

<html>
<head>
 <script LANGUAGE="JavaScript">
 document.write("Hello World")
 </script>
</head>
<body>
<hr>
</body>
</html>

• Type this into a new document using a text editor.
• Be very careful with the quote marks
• Save in a suitable place with the name hw1.htm
• 'Point' your browser at hw1.htm - either by double clicking on the file name if using

a file manager375 or typing file:///whereveryousavedit/hw1.htm into the
browser's address box.

You should now see Hello World displayed and a line displayed.
• If you can't see the line do View-Source to see if you're looking at the file
• If you can see the line but nothing else then either

• You have Javascript blocked on your browser - Turn it on
• Or you've made a typing mistake

Note : Each time you change something you have to refresh the page. Ctrl+R does this
on many browsers.

Programming Version 0.4 Page 313 of 356

The place of Javascript
As you can see from the code, we are putting the Javascript into the head block of the
document. This code automatically gets executed before the document displays.
Normally the bulk of a HTML document is in the body, but as all we want is a little
framework for trying a few simple programs we can hijack the document and leave the
body block blank.

A note about Javascript syntax
You will need to look at some reference materials which will also clue you up on the
other things that Javascript can do, ways it is used and how it interacts with the
structure of a web page.

What will seem strange is the use of periods in the middle of 'names-cum-functions'.
This is something that we haven't dealt with by the time of chapter 5. Briefly (and not
100% accurately) foo.bar(buz) is a function bar, with argument buz and that function
is (a) defined as a method that applies to whatever the type of foo is and (b) when called
applies to the variable foo. document.write("Hello") writes Hello to the thing called
document. document has been pre-defined. The function .write() is termed a
method. document is an object (as in object oriented programming).

• Javascript is not Java
• ; is not used at the end of statement
• All the code goes in a script block
• The results get interpreted as HTML.

hw2
Assuming you have got hw1.htm to show properly, we can look at hw2.htm.
<html>
<head>
 <script LANGUAGE="JavaScript">
 tot = 1.1 + 2.2 + 3.3
 document.write("Hello "+tot+" World")
 </script>
</head>
<body>
</body>
</html>
Javascript is not very type-sensitive. You can get away with murder... ...Or be mugged
if you're careless.

hw3
<html>
<head>
 <script LANGUAGE="JavaScript">
 document.write("Hello World
The time is ")
 today = new Date()
 document.write(today.getHours() + ":" + today.getMinutes())
 </script>
</head>
<body>
</body>
</html>

Programming Version 0.4 Page 314 of 356

today = new Date() means create a new object of type Date and call it "today".
.getHours() is a method (ie. function) which returns the hours extracted from a Date
object. In this case the particular object is today.

Framework for running examples
The hw series proved the system works and gave you a bit of experience with the edit-
save-refresh cycle. Now here is exercise 5.1 with a top and tail sections.

<html>
<head>
 <script LANGUAGE="JavaScript">
 // *******************
 // ***** Heading *****
 // *******************
 document.write("<h2>Exercise 5.1 - Average</h2>")
 document.write("<hr>")

 // ----- fill array with any old data -----
 COUNT = 8
 a = new Array(COUNT)
 for (i=0;i<COUNT;i++){ // js arrays start at 0
 a[i] = i + 1 // when i=0 1st element value is 1
 }
 sum = 0

 // ----- step through array adding up -----
 for (i=0;i<COUNT;i++){
 sum = sum + a[i]
 }

 // ----- results -----
 average = sum / COUNT
 document.write("
Average of " + COUNT + " items is " + average);

 // **
 // ***** flag end of program reached OK *****
 // **
 today = new Date()
 document.write("<p><small><i>")
 document.write("["+today.toLocaleString()+"]")
 document.write("</i></small>")
 </script>

</head>
<body>
<!-- all the work goes on in the javascript in the HEAD -->
</body>
</html>

The top identifies the program and tells you it has started. The tail tells you it has
completed and displays a timestamp so you can be sure that you're looking at the most
recent refresh. Obviously the middle bit contains the operative code which you can

Programming Version 0.4 Page 315 of 356

replace as required for the other exercises.

The reason for this top and tail stuff is that if Javascript encounters an error it just stops!
No handy messages or even a line number to give you a clue. If your code doesn't
complete then copy or move the line (which draws a horizontal line)
 document.write("<hr>")
down the page a bit, see if it gets displayed: If yes move it down more, if not move it up.
this should help you locate the line the error appears to occur at.

If you were wondering...
• Can Javascript read and write files? No.
• Can Javascript change a page without reloading? A little bit which can get very

complex to implement. Have a look at examples.
• How are things made to happen when for example a button is clicked? Buttons

(and other elements) have built-in event handlers that react to events such as
mouse clicking which normally do nothing but can be assigned to Javascript
functions. In the following HTML example, a button reacts to being clicked by
calling the a function called DoReplace().
 <input type=button value="Replace now" OnClick='DoReplace()';>

Programming Version 0.4 Page 316 of 356

376 There was a time when schools became very keen to teach everyone the binary system
'because we'd need that for when we all grew up into the computer age'. With slide-rules
and log tables going out of fashion binary arithmetic seemed the very thing to go in it's
place. It's a bit like saying we'll all be driving cars so lets teach primary school kids
thermodynamics.

B. Binary logic
Binary is about manipulating 0s and 1s. We do this is two ways
• Logically : eg 011 AND 101 gives 001
• Arithmetically : eg 011 PLUS 101 gives 1000 (3 + 5 = 8)
You won't have any difficulty getting a working knowledge of binary but there are
practical traps we'll investigate.376

Boolean
A boolean variable can only be either True or False. By definition True is NOT false
(and False is NOT True). Sometimes languages and data formats will treat 0 as False
and 1 as True but don't rely on it. If you are only dealing with Trues and Falses you can
use the following table to tell the outcome of combining two variables in different ways.

Boolean input arguments Result when combined using operator

AND OR XOR
(Exclusive OR)

True True True True False

True False False True True

False True False True True

False False False False False

Brackets
By far and away the most important
thing to learn with all binary
operations is to put brackets round
every operation to be absolutely sure
you control the sequence of
operations. Never forget this. When
you do - remember I told you!

Arithmetic
In case you don't know binary
arithmetic operates using base 2
instead of our normal base 10. The
only reason we get involved with

Base 2 Base 10 Base 16
Binary Decimal Hexadecimal
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 a
1011 11 b
1100 12 c
1101 13 d
1110 14 e
1111 15 f

Programming Version 0.4 Page 317 of 356

binary arithmetic in computers is that deep, deep inside, computers store and
manipulate their numbers using binary and sometimes we can take advantage of or be
tripped up by this fact.

Because generally nowadays computers work with 8 bits at a time the largest unsigned
number is 11111111 or 255 or ff or FF or 0xff
(Don't worry about case in hexadecimal. If it isn't obvious that you're working in hex put
a zero-x in front.)

If you were programming a volume control you might calibrate it in 255 steps from off(0)
to max(ff). You'll often see this sort of thing in lower level programming. If you were
getting the answers to a million questionnaires you might limit yourself to 14 options a
"didn't answer" and a "not relevant" to save space and make each record compact by
cramming two answers into a single byte. This is the tail wagging the dog! Sometimes
it is justified to set your real-world limits on these artificial boundaries. Would there be
any point in sticking to 8 possibilities, using three bits? The answer to this is 'it
depends'. If you have an absolutely huge amount of data then tight packing is a very
good thing, otherwise just be sensible.

What if you have a remote control for your model boat where you want the rudder to go
from full left, through zero (ahead) to full right? You need -127 to + 127. The highest,
leftmost or most significant bit can be used to flag the sign. There are other ways of
representing signed numbers which most programmers will never ever need to worry
about.

Sums
1 + 1 = 10 (1 + 1 = 2 decimal)
10 + 10 = 100 (2 + 2 = 4 decimal)
11 << 2 = 1100 (3 times 2 twice = 12 decimal)
11 << 3 = 11000(3 times 2 three times = 24 decimal)

The << says "shift-left" Since one shift left is the same as multiplying by two, two shift
lefts are the same as multiplying by 4. What is 11 << 6? Adding 6 zeroes on the tail
gives 11000000. 3 times 26 in decimal is 192... Or WCPGW? If the MSB is being used
as a sign this could be -112 in decimal.

You can usually say whether you want to work with signed or unsigned numbers. But
remember these three things:
• There will be limits on the size of number you can store for any number of bytes.
• The sign trap we've just seen.
• Somebody may be sending you data in a slightly different bit or byte scheme.

Check to see if signs are being used and if so how and check to see what the byte
order is. It may seem strange to you but some systems store multiple bytes with
the most significant byte before the least significant one, and others the other way
round. 0xabcd being [ab][cd] or [cd][ab]

If you need to know this level of detail you will know where to find out the specification.
A large proportion of programmers probably never touch binary arithmetic.

By the way, to divide by 2 shift right. (But quite frankly it will only be very exceptionally

Programming Version 0.4 Page 318 of 356

that you can't get the programming language to do the work for you.)

Logic
Binary logic is simple to understand on the page as described below but when it comes
to code you may need a quiet and darkened room for a few minutes to be absolutely
certain what's going on.

The following riles apply to results of conditional tests, single bits and whole binary
numbers. Here are the rules with some examples:

NOT
Flip 1 to 0 and 0 to 1
Often symbolised as !
NOT 1 = 0 NOT 0 = 1 NOT 00010101 = 11101010

AND
Result is 1 if both operands are 1
Often symbolised as &&
1 AND 0 = 0 1 AND 1 = 1 11110000 AND 10101010 = 1010000

OR
Result is 1 if either operand is 1
Often symbolised as ||
1 OR 0 = 1 1 OR 1 = 1 11110000 OR 10101010 = 11111010

XOR
Exclusive or. Result is 1 if one and only one of the operands is 1
1 XOR 0 = 1 1 XOR 1 = 1 11110000 OR 10101010 = 01011010

XOR has a very useful property which makes it 'reversible': If foo XOR bar is
buz then buz XOR bar gives foo. By treating each character of a message as 8
bits we can XOR them with a series of secret numbers to encrypt the message.
When we want to decrypt it all we have to do if repeat with the same secret
numbers and we get the plain message back again.

Set, flip and clear a bit
You might come across a specification like this: Set bit 3 in the control word when
data is available. It looks like you're going to have to poke 1000 (or 100 if the
specification is written with the LSB being called "bit 1") somewhere to flag we have
data ready. So how about:

ControlWord = ControlWord OR 0x08;
Is this guaranteed to set bit 3 without upsetting anything else? Let's see if it does bit 3
correctly first. There are two possibilities bit 3 was 0 or it was 1:

0 or 1 gives 1 - correct
1 or 1 gives 1 - correct

Now what about the three zeroes (bits 2,1, and 0). Once again each of these bits starts
out as either 0 or 1 and we mustn't change them

0 or 0 gives 0 - correct
1 or 0 gives 1 - correct

WCPGW? Are we absolutely sure that there are no spurious 1 bits? In this case yes,
but what if we were ORing with a variable which represented a signed number - it

Programming Version 0.4 Page 319 of 356

377 For a small fee I'll show you my scars.

might have that top bit set.377

What about when we don't have any data to send and have to clear bit 3. Once again
we need (1) a magic binary number and (2) the right operation. To force bit 3 to 0 we
can AND with 0. If we're ANDing what do the other bits need to be? All 1s.

ControlWord = ControlWord AND 0xf7; //11110111
Now what about the three 1s (bits 2,1, and 0). Once again each of these bits starts out
as either 0 or 1 and we mustn't change them

0 and 1 gives 0 - correct
1 and 1 gives 1 - correct

WCPGW? Are you sure that ControlWord is a single byte? It could be 2 or 4. (The
generally accepted terminology is unsigned or signed applied to byte, word or double
word for 1,2 and 4 bytes respectively.) If ControlWord is a 'word' then it is 2 bytes, 16
bits. All those bits might matter. Let's see what happens:

Say ControlWord is 1111000010101010
and we AND with 0000000011110111
We get 0000000010100010

Oops! The top-end zeroes implied in our 0xf7 have zapped any top-end bits in
ControlWord. Now we know about the problem we can of course use 0xfff7 if
ControlWord really is a two byte unsigned word..

There is a handy way to get 0xfff7 from 0x08. NOT. This will work for 1,2 or 4 bytes,
and is a clearer way of setting our bits. So to clear bit 3 we can write

Bit3Setter = 0x08;
Bit3Clearer = NOT Bit3Setter; // 0x(f's as needed) f7
ControlWord = ControlWord AND Bit3Clearer;

or if we're in a hurry
ControlWord = ControlWord and (not 0x08); // brackets!

WCPGW? Watch for any signed bytes, words or double words creeping in.

There is an easy way to flip bit 3: Just XOR with Bit3Setter.

Testing
How can you tell if bit 3 is set? Firstly by ANDing with a 1 in bit 3 position (and 0s in all
the other positions). This will give us

00001000 if bit 3 is set
00000000 if bit 3 was clear

All 0s is zero which is easy to test for (and may be defined as False)

Traps
In some languages minus 1 is taken as false. You might see a function like this

function foo(){ // returns integer
 if(something fails){return -1}
 ...
}

It is returning false the only way it knows how. foo() might be saying how many

Programming Version 0.4 Page 320 of 356

characters of data have been read from a file and return -1 to indicate the end of the file.
Sometimes -1 is just a handy distinctive number, called out of band, which can't
possibly be a real value and sometimes it is defined as false.

In some languages there are very particular rules about what is 'false'. For example in
PHP a number of 0, and also null string are 'false'. This leads to shorthand in the code
you could be reading which might not be obvious. Don't expect any shorthand
true/false techniques to copy verbatim to another language.

Don't mix logic operations (the sort we were doing with ControlWord) with conditional
logic (the sort in if statements.) You can get away with it by careful use of brackets
but you are on very thin ice. Suppose we are closing down our program and want to see
if we have any unsent data remaining which we ought to wait for. We can test to see if
bit 3 is set (data ready in our hypothetical example) and take some action as a result:

if (ClosingDown and ControlWord and 0x08){...
This code might possibly work, and pass your tests, but if it does it is a bit of a fluke,
depending as it does on the precise way conditional logic, logic operations and
arithmetic are mingled. A better way would be

Bit3Set = ((ControlWord and 0x08) == 0x08);
if (ClosingDown and Bit3Set){...

With typed languages (as those that deal with bits will be) Bit3Set would be declared as
a boolean just so there wasn't any mystery and the compiler can help us if it spots us
trying to use it for anything except true of false.

Programming Version 0.4 Page 321 of 356

Programming Version 0.4 Page 322 of 356

C. CD collection
This is the SQL code used to create the tables in the CD collection database in chapter
10. This works for MySQL but you may have to modify the code slightly for other DBMS.
It is probably a good idea to use this as reference for manual entry so as to get
experience with whatever database administration tool you're using.

CREATE TABLE artist (
 arId int(11) NOT NULL auto_increment,
 arName varchar(60) NOT NULL default '',
 arBirthYear int(11) default NULL,
 arDeathYear int(11) default NULL,
 arNotes mediumtext,
 PRIMARY KEY (arId)
) TYPE=MyISAM;

CREATE TABLE cd (
 cdId varchar(20) NOT NULL default '',
 cdTitle varchar(50) NOT NULL default '',
 cdSubTitle varchar(50) default NULL,
 cdGeId int(11) NOT NULL default '0',
 cdNotes mediumtext,
 PRIMARY KEY (cdId),
 FULLTEXT KEY cdNotes (cdNotes)
) TYPE=MyISAM;

CREATE TABLE cdar (
 caCdId int(11) NOT NULL default '0',
 caArId int(11) NOT NULL default '0',
 PRIMARY KEY (caCdId,caArId)
) TYPE=MyISAM;

CREATE TABLE genre (
 geID int(11) NOT NULL auto_increment,
 geGenre varchar(30) NOT NULL default '',
 PRIMARY KEY (geID)
) TYPE=MyISAM;

Programming Version 0.4 Page 323 of 356

Programming Version 0.4 Page 324 of 356

378 That's all you're getting on machine code in this book. Some people study ship building.
Some people study timber construction. Some people study wood. Some people study the
botanical aspects of wood. All these people are aware of the others, respect their
knowledge and hope to be able to learn something useful to themselves from the others.
I'm trying to tell you how to make money from ship building - don't ignore the timber you
use but don't get distracted either.

E. Compiling and
linking. Libraries

The subject of this appendix used to be (and may still be for all I know) a core aspect of
practical computer science. The modern programmer can get away without knowing a
single word of this because nowadays things happen by magic.

However, if I should ever come across any person claiming to be a Real Programmer who
can't be bothered to look beneath the surface then scathing remarks will be passed - in
a very loud and sarcastic manner!

Summary
• A compiler normally creates an object code module from source code. (It may

create 'byte code' which is run on a virtual machine.)
• Object code is only suitable for a specific target processor
• Different compilers can take the same source for different targets
• A linker creates an executable from object code modules
• A library is a module of object code or source code comprising a number of

functions or access to resources (even perhaps objects)
• Module : Handy generic term for a unit of code that can (sort of) stand on its own.
• A dynamic link Library (DLL) is a file of executable code that can be loaded at run

time (as opposed to compile time) to provide necessary services.
• Machine code is the native instructions that the processor uses. These are mostly

'simple' instructions such as Fetch the 2 bytes of data starting at the memory address as given by the value

currently being held in the HL register interpreted as an address and put it in the CD register. and Jump back 52 bytes

(by decrementing the program counter by 52) if the last sum we did using the DE register was zero. 378

• Pseudo code or byte code is a semi-compiled binary form of almost-object code.
This is not tied to one make and model of processor, but it is tied to a particular
language which runs as a virtual machine. Java is an example.

• make is a program (of which many variants exist) which uses a configuration file to
automate the creation of executable code with the minimum amount of re-
compiling and linking.

Resources
A typical Beginner program will start along these lines:

Programming Version 0.4 Page 325 of 356

379 This is what programming using Windows system API looks like. Hmmm. Shame about
the lack of objects. The printer handle is a pointer to an object but the function name
DoPrintText could easily be used elsewhere leading to confusion. (Something like this
happened to me once which caused no end of problems until I twigged.)

380 Originally as for high level languages. There was very significant computer-life before this
which is fascinating if you are tickled by the idea of how can you get a quart out of a pint
pot and move technology on a step. (In some cases too many steps. See the history of
LEO, Lyons Electronic Office and xerography.) There were some very brilliant people about
in the days who knew they were pioneering but not where it would lead.

0. With pencil and paper
- rest of program continues ...

What this is saying is that you need to collect these resources before you start. Also
you'll check your paper is the right size and the pencil is sharp. I expect you've done
exams which say "using the graph paper provided ..." or "indicate on the figure..." Just
like these which are prepared for you (pre-printed) in the exam so as much as possible
is done to prepare the resources a computer program will use. Whimsically we can
think of a 'paper module' which 'provides' plain, lined and graph paper and a 'writer'
module which 'provides' pencils and pens. In computer programming terms these
modules provide functions which either do things or provide access to resources.
(Another name for a module is a library, but see the end of the diversion.)

A module might provide access to and functions to control a printer in which case it
might have an API¤ which allows you to do the following (in Fudge):

printerHandle = CreateNewPrinterInstance(PR_DEFAULT);
SetPrinterColour(printerHandle,PR_BLACK); // print in black
SetPrinterUnits(printerHandle,PR_MM); // millimetres
DoPrintText(printerHandle,50,50,'Black cat in coal cellar');
DoPageEject(printerHandle);
ReleasePrinter(printerHandle);379

Notice that printerHandle is resource (called a handle) and just like you might put a
pen down after using it so you have to free handles or else after a while your program
stops with an obscure error message because you've used all the available resources
without releasing any of them.

Compile and link
The original two-step method380 of building a complete computer program was
1 To convert text code into 'object code'. Here 'object' is NOT being used in the sense

you understand it - In fact I don't know why it is called object code. This was as far
as possible all the actual computer instructions that the processor would execute
with gaps left for where the variables would go (foo goes here when we know where foo will be

located) and question marks for functions that were called but not actually specified
in the code. (We are going to call a function called foo with two integers and a real and get a real back)

Getting this far is called compiling. All the syntax has been checked for
readability, space allocated for variables, constants set and a list of 'loose ends'
created. Also the resulting module has a table of function names in this module
and how to call them. Compiled code is pretty much fixed so if we know that the
start of the program happens to be loaded into memory at location X then we

Programming Version 0.4 Page 326 of 356

381 500 etc are used to vaguely represent address locations in memory. For illustration only.
Take with pinch of salt. I've also used 'the stack' (remember that?) which is practically a
universal feature of processors - It's a really handy way of transferring arguments to
functions and getting the result back. (It's handy for other related things too.)

immediately know the offsets of all of the functions it contains. For example the
first function starts at X+0, second at X+123, third at X+456 and so on. This will
be really handy when eventually we come to run the program and something like

A = SIN(B)
where SIN() is in another module, becomes

500 Push memory location 400 on stack.
501 Jump to subroutine at 890.
890 initialise sine routine

pop a real variable off the stack
use value to compute sine
put real result onto stack
tidy up sine routine

502 Pop real off stack to memory location to 401
381

(400 contains B, 401 is allocated to A. The 'jump to 890' is filled in when we join
modules together.)

2 One or more modules of object code are linked together. This does two things:
• Finds out how to connects up all the loose ends. When the linker comes across

a function call in a module that references a module in another one then it can
complete the missing pointers to addresses in different modules.

• The bits of object code are then packaged in a standard way that makes it
possible for the file to be loaded and run as a program. This result is called an
executable.

This means that you don't have to recompile all the trigonometric, statistical or
whatever functions each time you tweak the working guts of your program.

If people use the same method of representing object code then my trigonometry library
and Charlie's map library can be linked with your original work to make a globe.
Interestingly my trigonometry could have originally been written in say the C language
and the map library might be all binary data.

But
Object code is only suitable for running on one sort of processor.

A compiler is set up to take input in one language (source code - the sort you write) and
output it in another (object code) dedicated to one make and model of processor. (There
are linker and operating system issues too.) You can get all sorts of permutations of
source and target but life is too short to contemplate all possibilities. This is why there
are a handful of common computer languages for a handful of processors and operating
systems. (If Richard Thompson creates a language called See for Laurence Tebbold's
operating system called Loonix running on an Grimtel Bentium processor how many
people will be queuing up to pay for it?)

Interpreted language
It is possible, but not very efficient convert source code into executable code line-by-

Programming Version 0.4 Page 327 of 356

382 Actually it is a lot of trouble, or used to be when BASIC was common. Even today : Take
nothing for granted.

383 Called Java Run Time Environment or JRE.

384 In a software sense.

385 In *nix world called daemons. In Windows called services. As a Real Programmer you
should track down every single one and kill those you don't need and find out how they
get started in the first place. Most Windows systems have a couple of dozen parasites.

line as and when required. Writing an interpreter is quite easy providing the language
demands are not too stringent. (The most famous interpreted language is BASIC
although it comes in compiled versions as well.) The trouble is, although it isn't too
difficult to transport an interpreted program to a new machine382, each line needs a lot
of work each time to do the translation between human readable form and machine
readable form. Also a compiler can do wonders of optimisation which might double
speed again.

There is an intermediate compromise which seems to work quite well and has come
into vogue at least twice. Source code is compiled into a almost-object code variously
called 'pseudo-code', 'p-code' or 'byte code'. This has had all the syntax checks done and
is designed to be easy to convert into whatever machine code is required on the fly very
quickly. Java is the best, but by no means unique, example of this today. This means
that you can compile Java source code (to give .class files of byte code). These files are
then linked and run together as required by the Java run-time virtual machine383. If a
computer has a working Java runtime environment then it should be able to run all
Java programs subject to version and resource limitations. This makes Java portable.

Dynamic linking
In a modern computer there are a dozen things going on at once. The operating system
provides the overall infrastructure384 onto which are attached specialised libraries called
drivers which interface with hardware and other network devices, all manner of utility
and snooping programs385, really useful background applications, really useful
foreground applications and of course your specially written programs.

Many of these programs want to do the same thing. For example, make a rude noise
when something needs attention is common to many programs. It makes sense for the
operating system to provide this basic level of service by providing a way for any
program to call the 'RudeNoise()' function. It would be silly if every program had to
duplicate this. Lots of programs want to paint on the screen, they want to use fancy
fonts, they want to be able to find out what sort of format to use for the date and 1000
other things. These could be built-into the operating system library of functions but
experience has shown that it is big enough as it is and instead it is better to have a
colony of add-ons. In fact a lot of the operating system is made of these components. It
is impossible to draw a line where the operating system stops and the many utility
libraries starts. These 'ready-when-you-want-me' function libraries are often called
Dynamic Link Libraries (DLLs) (@@@Pat? Equiv in *nix)

DLLs are great in a couple of respects: They provide functions 'cheaply' and can adapt

Programming Version 0.4 Page 328 of 356

386 A case in the news just today. 99% of programmers don't need to worry - there's nothing
you can do - and you'll only be using these functions via an intermediate layer.

relatively quickly to changing circumstances or bug fixes. The downside is that you are
relying on third-party software out of your control. If somehow somebody 'upgrades' a
DLL that you use then your program might stop working in an unexplainable way.386
Some installations will install newer versions of these libraries - in the terms of the new
program that's good but it might mean your program that relied on the old library
suddenly stops working. Finding out what's wrong will be a nightmare and possibly the
only answer is uninstall the new program and live with the fact that they won't work
together.

Make
For a lot of people make is not history it's a way of life.

In this section we've scratched the surface of compile and link. Compile converts
source into machine readable instructions. Link finalises how functions are called
across modules and produces a single executable file.

Compiling will typically take a some source files in addition to the main one. These
might be for example resources such as pictures or instructions in umpteen languages.
In the C language 'header' files are used to tell the compiler not to worry about certain
loose ends. So you need to recompile if any of these files has changed. Conversely -
this is the important bit - you don't have to compile if nothing has changed.

When linking together an application you will have one or more object files as
components. If any of these change then you need to re-link.

Some bright spark twigged that if you described these dependencies (in a text file
called a 'make file') by simple rules then you could write a program that read the rules,
discovered which files had been altered and do the necessary actions. This meant that
once you'd put the make dependencies into the make file all you had to do was type
make and the necessary compiling and linking (but no more) would be done. We are
talking minutes even for a small change to the source. Nowadays computers are faster
but programs are bigger so this sort of efficiency is absolutely vital.

Programming Version 0.4 Page 329 of 356

387 Many UNIX time stamps count from this time.

388 When I took my cat to the vet they asked how old he was. Sensible question. As a rescue
cat I didn't know but guessed 3 years. Now on the vets database the cat has an actual
date of birth exactly three years from the day I first took him down there.

D. TinyDate object
Dates and times (the two are often joined at the hip) are full of traps and need careful
handling. Whatever programming language you use you should have access to some
form of date, time and/or combined date and time facilities.

Many date-times are represented as the number of seconds since some moment.
WCPGW? 'Some moment' is in the 00:00:00 on the 1st Jan 1970 and you want dates in
the 1790s perhaps.387 Some people find dealing with dates particularly troublesome - it
is a frequently raised topic in support newsgroups.

In my experience dates simply based on ticks of a clock are not sufficient to represent
the dates we use in the real world. For
example on your employment record file
there's a space for date you joined the
company and date you left... ...And
what is the 'date' for the date you left if
you still work here? What year did you
get married? What's the 'date' for
1982.388 Dates are not linear, they're just
weird.

Here is the full set of date situations that we need to cater for:
Not a date
Beginning of time
End of time
Specific year
Specific month (no year/day)
Specific day (no month/year)
Specific Year/month (no day)
Specific Month/day (no year)
Year / month / day

And the arithmetic we can do in very interesting:
How many days between 1875 and 1900? - Not a valid question
What's the interval between 1875 and 1900 - 24 years (months n/a days n/a)
Is 14th October 2006 before November 2006 - Yes
Is 14th October 2006 before October 2006 - No
Is 14th October 2006 after October 2006 - No

Many companies work on 13 four-week
periods in a year not 12 months. So does
your software allow both options? Some
work on a 4-4-5 weeks per 'month' cycle -
When analysing production or sales can
the raw figures be adjusted in proportion?

Programming Version 0.4 Page 330 of 356

389 For example synchronizing between threads.

With many being not valid

Clearly we are in a different world to simply working in seconds.

My requirements
What I needed was a date with
• this sort of flexibility
• that could be stored and retrieved efficiently in a database
• and be sorted.

My solution
In order to work with these dates I wrote a set of functions which were put into my
useful Delphi library. With these I could convert everyday strings to and from tiny
dates, convert Delphi's TDateTime type to and from tiny dates, work with database
fields of three characters and compare, including "definitely before" etc. The principle
was to use 21 bits packed into three bytes to be converted into a three character string.
Having the string representation meant immediate access to ready-made sorting and
database features.
This library of functions has served me well since 1996.

An alternative using objects
If objects are so wonderful shouldn't these functions be converted into methods of a
TinyDate class? At this moment in time I don't see any need for sub-classing and if
there is only a single three character string for data why bother? Because at some
future time the internal format might change and we need to internalise that
mechanism for future-proofing. Also an object can be protected and processed in useful
ways within an OO language that lots of functions can't.389

Exercise
The following is presented as an exercise to give you experience of coding and testing a
class in an OO language. You'll want to have finished chapter 14 first. It will probably
take between five and ten hours, but will be a very good investment.

Specification
Purpose : To implement the date functionality described above as an object. In
particular:
• Encoding non-linear and special date values.
• Translating (with error trapping) between system dates
• Translating (with error trapping) between everyday string representations.

In an OO implementation there would need to be the usual black-box object which
has data and methods. That's normal, but in addition there needs to be a pure data
representation that is suitable for use in a database. With the non-OO of Delphi
there was no 'internal state' of an object beyond the data-only representation.

Programming Version 0.4 Page 331 of 356

• Providing a value representation that can be used in a database and will sort into
'order'.

• Providing comparison and arithmetic operators capable of dealing with non-
specific dates. As far as possible, possibly with fudge-rules. For example the
number of days difference.

Implementation tips
• The three character 'string' used for database and sorting used in my existing

library is as follows: This might be a place to start. You do not have to follow this
format or stick to these limitations.

 Data format
 | Bytes/Characters expressed left to right
 |
 | byte/char 1 byte/char 2 byte/char 3
 | --------------- --------------- ---------------
 | 0 1 y y y y y y 0 1 y y y m m m 0 1 m d d d d d
 |
 | Strange layout is because
 | (1) All high bits = 0
 | (2) No char can ever be all 0 bits
 | Year offset = 1700 which allows dates from 1703 to 2200
 | Year = 0..500 0=No year 1=Not valid date
 | 2=Beg.of.time 511= EndOfTime
 | Month = 1..12 0=No month
 | Day = 1..31 0=No day

• You may want to provide constants to represent Beginning of time, End of time and
Not a Date.

• You may want to provide a way to say which parts of the date are specified. this
could be by some constants used as in

if (date.Detail()==TD_MONTHONLY){ ...
or you might prefer test methods as in

if (date.IsMonthOnly()){ ...
or both. Experience might indicate where you want to find out more general (what
rather than how) information as in

if (date.IsReal()){...

• YCPL will have date handling already. To what extend do you want to avoid
duplication and what can you re-use.

Prototyping, Proof of concept
This will probably be a big part of this exercise. One of your first jobs will be to split it
up into sub-tasks then tackle them in an organised fashion.

Should there be any class methods? For example to convert a tiny date 'database value'
into another form without the user having to create an intermediate tiny date object?

Testing
• There will probably be quite a bit of experimental data at the prototyping stage

which can get carried across to an exercise program in the same way as chapter
14.

Programming Version 0.4 Page 332 of 356

390 You might want to write this before head-down coding. Even if you'd been commissioned
by a user to create this library it is handy to have a few paragraphs that you can show
them to keep them interested and convince them that although it is taking longer than
expected it will be worth the wait.

• There will be quite a few combinations of possible dates and the operations on
them which will all need to be tried. This is probably best done with a
comprehensive automated test program rather than a few examples in a user-
friendly 'test' program.

• The specification above should give you some hints about splitting the testing into
manageable chunks.

• With many combinations to test you need to think about fully automated testing
otherwise you'll never be able to spot erroneous needles in a haystack of results.
(This is a tough challenge to deal with 'off-the-cuff' so give it some thought. You
might want to ask yourself what you'd do if you were able to share test data with
somebody else.)

• What are the database implications? Is the choice of database irrelevant?

Deliverable results
• Finished standard code
• Properly documented API including a well laid out specification of the way tiny

dates are represented in a database.
• User guide including 'test program' example use with limitations and restrictions.
• 'Sales brochure' of a few paragraphs390

Review
After using tiny dates you'll wonder how you managed before. So this library will
become part of your standard toolkit. It will evolve over time so you'll need to look after
your development files carefully.

Finally
• I've seen '30 lines of code per day' (whatever that means) at the 'industry average'.

Even with all the prototyping, documentation and testing you will do a lot better
than that - but it won't happen in a morning.

• It's a funny thing, but it is virtually impossible to discuss or sell something unless it
has a name. 'Tiny date' is my name which arose through particular circumstances
now lost in the mists of antiquity. Perhaps you can come up with an improvement.

Programming Version 0.4 Page 333 of 356

391 That's all you're getting on machine code in this book. Some people study ship building.
Some people study timber construction. Some people study wood. Some people study the
botanical aspects of wood. All these people are aware of the others, respect their
knowledge and hope to be able to learn something useful to themselves from the others.
I'm trying to tell you how to make money from ship building - don't ignore the timber you
use but don't get distracted either.

E. Compiling and
linking. Libraries

The subject of this appendix used to be (and may still be for all I know) a core aspect of
practical computer science. The modern programmer can get away without knowing a
single word of this because nowadays things happen by magic.

However, if I should ever come across any person claiming to be a Real Programmer who
can't be bothered to look beneath the surface then scathing remarks will be passed - in
a very loud and sarcastic manner!

Summary
• A compiler normally creates an object code module from source code. (It may

create 'byte code' which is run on a virtual machine.)
• Object code is only suitable for a specific target processor
• Different compilers can take the same source for different targets
• A linker creates an executable from object code modules
• A library is a module of object code or source code comprising a number of

functions or access to resources (even perhaps objects)
• Module : Handy generic term for a unit of code that can (sort of) stand on its own.
• A dynamic link Library (DLL) is a file of executable code that can be loaded at run

time (as opposed to compile time) to provide necessary services.
• Machine code is the native instructions that the processor uses. These are mostly

'simple' instructions such as Fetch the 2 bytes of data starting at the memory address as given by the value

currently being held in the HL register interpreted as an address and put it in the CD register. and Jump back 52 bytes

(by decrementing the program counter by 52) if the last sum we did using the DE register was zero. 391

• Pseudo code or byte code is a semi-compiled binary form of almost-object code.
This is not tied to one make and model of processor, but it is tied to a particular
language which runs as a virtual machine. Java is an example.

• make is a program (of which many variants exist) which uses a configuration file to
automate the creation of executable code with the minimum amount of re-
compiling and linking.

Resources
A typical Beginner program will start along these lines:

Programming Version 0.4 Page 334 of 356

392 This is what programming using Windows system API looks like. Hmmm. Shame about
the lack of objects. The printer handle is a pointer to an object but the function name
DoPrintText could easily be used elsewhere leading to confusion. (Something like this
happened to me once which caused no end of problems until I twigged.)

393 Originally as for high level languages. There was very significant computer-life before this
which is fascinating if you are tickled by the idea of how can you get a quart out of a pint
pot and move technology on a step. (In some cases too many steps. See the history of
LEO, Lyons Electronic Office and xerography.) There were some very brilliant people about
in the days who knew they were pioneering but not where it would lead.

0. With pencil and paper
- rest of program continues ...

What this is saying is that you need to collect these resources before you start. Also
you'll check your paper is the right size and the pencil is sharp. I expect you've done
exams which say "using the graph paper provided ..." or "indicate on the figure..." Just
like these which are prepared for you (pre-printed) in the exam so as much as possible
is done to prepare the resources a computer program will use. Whimsically we can
think of a 'paper module' which 'provides' plain, lined and graph paper and a 'writer'
module which 'provides' pencils and pens. In computer programming terms these
modules provide functions which either do things or provide access to resources.
(Another name for a module is a library, but see the end of the diversion.)

A module might provide access to and functions to control a printer in which case it
might have an API¤ which allows you to do the following (in Fudge):

printerHandle = CreateNewPrinterInstance(PR_DEFAULT);
SetPrinterColour(printerHandle,PR_BLACK); // print in black
SetPrinterUnits(printerHandle,PR_MM); // millimetres
DoPrintText(printerHandle,50,50,'Black cat in coal cellar');
DoPageEject(printerHandle);
ReleasePrinter(printerHandle);392

Notice that printerHandle is resource (called a handle) and just like you might put a
pen down after using it so you have to free handles or else after a while your program
stops with an obscure error message because you've used all the available resources
without releasing any of them.

Compile and link
The original two-step method393 of building a complete computer program was
1 To convert text code into 'object code'. Here 'object' is NOT being used in the sense

you understand it - In fact I don't know why it is called object code. This was as far
as possible all the actual computer instructions that the processor would execute
with gaps left for where the variables would go (foo goes here when we know where foo will be

located) and question marks for functions that were called but not actually specified
in the code. (We are going to call a function called foo with two integers and a real and get a real back)

Getting this far is called compiling. All the syntax has been checked for
readability, space allocated for variables, constants set and a list of 'loose ends'
created. Also the resulting module has a table of function names in this module
and how to call them. Compiled code is pretty much fixed so if we know that the
start of the program happens to be loaded into memory at location X then we

Programming Version 0.4 Page 335 of 356

394 500 etc are used to vaguely represent address locations in memory. For illustration only.
Take with pinch of salt. I've also used 'the stack' (remember that?) which is practically a
universal feature of processors - It's a really handy way of transferring arguments to
functions and getting the result back. (It's handy for other related things too.)

immediately know the offsets of all of the functions it contains. For example the
first function starts at X+0, second at X+123, third at X+456 and so on. This will
be really handy when eventually we come to run the program and something like

A = SIN(B)
where SIN() is in another module, becomes

500 Push memory location 400 on stack.
501 Jump to subroutine at 890.
890 initialise sine routine

pop a real variable off the stack
use value to compute sine
put real result onto stack
tidy up sine routine

502 Pop real off stack to memory location to 401
394

(400 contains B, 401 is allocated to A. The 'jump to 890' is filled in when we join
modules together.)

2 One or more modules of object code are linked together. This does two things:
• Finds out how to connects up all the loose ends. When the linker comes across

a function call in a module that references a module in another one then it can
complete the missing pointers to addresses in different modules.

• The bits of object code are then packaged in a standard way that makes it
possible for the file to be loaded and run as a program. This result is called an
executable.

This means that you don't have to recompile all the trigonometric, statistical or
whatever functions each time you tweak the working guts of your program.

If people use the same method of representing object code then my trigonometry library
and Charlie's map library can be linked with your original work to make a globe.
Interestingly my trigonometry could have originally been written in say the C language
and the map library might be all binary data.

But
Object code is only suitable for running on one sort of processor.

A compiler is set up to take input in one language (source code - the sort you write) and
output it in another (object code) dedicated to one make and model of processor. (There
are linker and operating system issues too.) You can get all sorts of permutations of
source and target but life is too short to contemplate all possibilities. This is why there
are a handful of common computer languages for a handful of processors and operating
systems. (If Richard Thompson creates a language called See for Laurence Tebbold's
operating system called Loonix running on an Grimtel Bentium processor how many
people will be queuing up to pay for it?)

Interpreted language
It is possible, but not very efficient convert source code into executable code line-by-

Programming Version 0.4 Page 336 of 356

395 Actually it is a lot of trouble, or used to be when BASIC was common. Even today : Take
nothing for granted.

396 Called Java Run Time Environment or JRE.

397 In a software sense.

398 In *nix world called daemons. In Windows called services. As a Real Programmer you
should track down every single one and kill those you don't need and find out how they
get started in the first place. Most Windows systems have a couple of dozen parasites.

line as and when required. Writing an interpreter is quite easy providing the language
demands are not too stringent. (The most famous interpreted language is BASIC
although it comes in compiled versions as well.) The trouble is, although it isn't too
difficult to transport an interpreted program to a new machine395, each line needs a lot
of work each time to do the translation between human readable form and machine
readable form. Also a compiler can do wonders of optimisation which might double
speed again.

There is an intermediate compromise which seems to work quite well and has come
into vogue at least twice. Source code is compiled into a almost-object code variously
called 'pseudo-code', 'p-code' or 'byte code'. This has had all the syntax checks done and
is designed to be easy to convert into whatever machine code is required on the fly very
quickly. Java is the best, but by no means unique, example of this today. This means
that you can compile Java source code (to give .class files of byte code). These files are
then linked and run together as required by the Java run-time virtual machine396. If a
computer has a working Java runtime environment then it should be able to run all
Java programs subject to version and resource limitations. This makes Java portable.

Dynamic linking
In a modern computer there are a dozen things going on at once. The operating system
provides the overall infrastructure397 onto which are attached specialised libraries called
drivers which interface with hardware and other network devices, all manner of utility
and snooping programs398, really useful background applications, really useful
foreground applications and of course your specially written programs.

Many of these programs want to do the same thing. For example, make a rude noise
when something needs attention is common to many programs. It makes sense for the
operating system to provide this basic level of service by providing a way for any
program to call the 'RudeNoise()' function. It would be silly if every program had to
duplicate this. Lots of programs want to paint on the screen, they want to use fancy
fonts, they want to be able to find out what sort of format to use for the date and 1000
other things. These could be built-into the operating system library of functions but
experience has shown that it is big enough as it is and instead it is better to have a
colony of add-ons. In fact a lot of the operating system is made of these components. It
is impossible to draw a line where the operating system stops and the many utility
libraries starts. These 'ready-when-you-want-me' function libraries are often called
Dynamic Link Libraries (DLLs) (@@@Pat? Equiv in *nix)

DLLs are great in a couple of respects: They provide functions 'cheaply' and can adapt

Programming Version 0.4 Page 337 of 356

399 A case in the news just today. 99% of programmers don't need to worry - there's nothing
you can do - and you'll only be using these functions via an intermediate layer.

relatively quickly to changing circumstances or bug fixes. The downside is that you are
relying on third-party software out of your control. If somehow somebody 'upgrades' a
DLL that you use then your program might stop working in an unexplainable way.399
Some installations will install newer versions of these libraries - in the terms of the new
program that's good but it might mean your program that relied on the old library
suddenly stops working. Finding out what's wrong will be a nightmare and possibly the
only answer is uninstall the new program and live with the fact that they won't work
together.

Make
For a lot of people make is not history it's a way of life.

In this section we've scratched the surface of compile and link. Compile converts
source into machine readable instructions. Link finalises how functions are called
across modules and produces a single executable file.

Compiling will typically take a some source files in addition to the main one. These
might be for example resources such as pictures or instructions in umpteen languages.
In the C language 'header' files are used to tell the compiler not to worry about certain
loose ends. So you need to recompile if any of these files has changed. Conversely -
this is the important bit - you don't have to compile if nothing has changed.

When linking together an application you will have one or more object files as
components. If any of these change then you need to re-link.

Some bright spark twigged that if you described these dependencies (in a text file
called a 'make file') by simple rules then you could write a program that read the rules,
discovered which files had been altered and do the necessary actions. This meant that
once you'd put the make dependencies into the make file all you had to do was type
make and the necessary compiling and linking (but no more) would be done. We are
talking minutes even for a small change to the source. Nowadays computers are faster
but programs are bigger so this sort of efficiency is absolutely vital.

Programming Version 0.4 Page 338 of 356

400 Also practice being able to break a task down into levels and segments so that each task
is a manageable size in a logical structure.

F. Filing system

Help yourself
Say goodbye to "my documents".
Say hello to PACT.

Say goodbye to "it's here somewhere - this looks like the latest copy".
Say hello to "I have it in my hand"

Say goodbye to "what did we agree?"
Say hello to "I have a note here"

Say goodbye to "will you spend time looking for me?"
Say hello to "look in the filing system under Foo"

In this appendix I will show you how with a little bit of organisation you can astonish
your friends, colleagues, and especially confound, your enemies by having important
information ready to hand. It is not rocket science but it is vital. Just because you're a
wacky free-wheeling programmer doesn't mean you have to live in a shambolic world of
missed appointments, lost code and guesswork. You can still be a creative genius by
knowing exactly where your tools are - and your tool is information. In fact you will
amaze people by how well organised you are - they soon know not to try to bamboozle
you like they do others.

The parts
Mental filing system
This important system is rather error prone, but is good at recalling things in a general
way when prompted. As you get older so you may find your memory and capacity to
juggle with a number of things at the same time starts to decay. A lot of programming
consists of diversions and loose ends - get into the habit of making to-follow-up notes
either in the code or on a jotter. Many programmers type in a code that can be
searched for such as @@@ that is unlikely to appear otherwise perhaps with a shorthand
for what needs revisiting. It's a great aid to rapid progress not to have to stop your flow
to investigate, validate, document or explore minor points.

An experienced chef can be chopping, cleaning, mixing, grilling, simmering, roasting
and finishing all at the same time using all of the facilities of a kitchen. Your task is
similar except that you have to do it all in your head. You should be training your brain
(see chapter 18) to deal with six things-to-do at the same time and being able to switch
instantly between them.400

Programming Version 0.4 Page 339 of 356

401 I'd like a pound for every time I've referred to user's passwords when they have lost them.
Fortunately the security risk is low because I know what they are but a casual reader
wouldn't. Not ideal but very practical.

Jottings
Sketch, explain, prepare. Multi-
coloured masses of ideas and shopping
lists. Recall that your mental filing
system will be fully occupied with
programming so you must get into the
habit of unloading bits to paper even if
only for half an hour. I know this
sounds too basic for any intelligent person but yes, you need paper and a
scribblything¤; and you need it ready to hand. Just see how quickly a desk jotter fills
up with odds and sods. Just see how ideas develop if you sketch them out on a larger
piece of paper. Just see how many things you forget to buy when you don't make a
shopping list. Jottings have a short life and not much context. However they are
flexible and nicely fill the gap between your mental filing system and more permanent
records.

Notes
Every programmer carries a hard-back
notebook. Everything of any
importance that isn't otherwise filed
goes in it. Records of meetings, system
configurations, phone numbers, wiring
diagrams and even, ahem, passwords
for your client's systems.401 Your
notebook is a precious part of your working toolkit. Look after it, put your name and
address on it. 95% of the stuff in there will never be needed - but the other 5% is gold-
dust. You made a note of what happened at the last meeting and now you ask why the
foo that was going to be provided at this one hasn't been. The specification you are
working on as discussed has somehow changed when it gets circulated? What's going
on? "I can tell you the exact version of foo we are using at the moment and also the
gotchas¤ to go with updating". Because most people are not used to working with
large amounts of abstract information, technical data, what-ifs, having to marry the big
vision with minute precision and picking the reality out of what people say, they are not
geared up to being organised like you and will be amazed. (And probably cross when
you open your book and the sunlight shines on dark areas.)

Other paperwork
You need a filing cabinet. If only to put copies of invoices and time sheets in. I'm not a
Clean Desk Nazi but being able to put a project to bed for the time being knowing that
it isn't too far away if the phone rings is really handy. If other people are likely to share
this filing system then have a rule that either the whole package is extracted and
replaced (so you can shout "who's got the Foo stuff" and caring for it is that person's
responsibility) or a place marker is used to indicate temporary theft. It will help if you

Some people find that writing something
down and referring to it once or twice is a
powerful memory aid. If you are one of
these people, be creative with layout and
coloured pens.

Tip. Use tick boxes - 9 -against things to
do or follow up. You can scan a page and
quickly see the ones you haven't managed
to cross out yet.

Programming Version 0.4 Page 340 of 356

402 Magazines are strictly out! They are entertainment for people who like looking at the
pictures.

403 If you work '9-to-5' then always have a minimum of half an hour's fresh air away from a
screen at lunch time. Try the alternative and see how drained you get by the end of the
day. Experiment with different breaks and work patterns to see what works best for you
in your environment. In my first job we could earn overtime which was a nice little bonus -
I found that a switch of project for the overtime session gave a fresh start.

404 Warning - A lot of 'take it from me' confidences are not as reliable as they might appear.
Furthermore your correspondent might be on a fishing expedition for devious reasons.
Nevertheless it's good to have an ear to the ground and people who want you 'to be on
their side'.

clearly and systematically label the dividers so that people don't start looking in all sorts
of places.

The well read programmer
You need some books around if only just to show off your interests in cats, cacti and
castrati to nosy parkers402. Seriously, books can be relaxing - If you're a good
programmer you (a) need to rest - having a routine schedule if possible403, and (b) can
enjoy ostentatiously 'doing nothing' while relaxing with a book. The rest of office-life
and lesser programmers value the appearance of activity; and yet if you look, they have
random periods of interfering gossip, coffee making and rearranging their desk-junk.
You on the other hand are always in control, always confident and normally relaxed -
until you switch into code-mode when your silent, intense concentration is a sign of a
great mind at work.

The more important or highly charged an issue is the more difficult it is for people to
approach the subject. It's a lot easier if they can start by talking to you about a
'harmless', non-technical matter before tackling the ticking bomb. So you need to be
'talkable to' - (you know, just like a real human being with hobbies and interests) - in
order to get these confidences, opinions and observations that show you a view 'behind
the scenes'.404

Review
We haven't got onto electronic filing yet, but I think you can see the value of being
organised and the necessity of using the right tools for the job. Try the alternatives if
you don't believe me.

Because you work with such a slippery commodity, information - most of it abstract, in
such a wide variety of forms you have to organise it to be good at your job. Other
people might work with information, but so what if the graphs are pretty but fact free,
or factual but not pretty? So what if the press release is vague? What sort of abstract
concepts are the bean counters working with? Why are good programmers rare and
treated with respect? Because they have the skills to tame information and are not
afraid to use them.

Programming Version 0.4 Page 341 of 356

405 I can also say with confidence that it won't be perfect and Sod's law applies.

406 I have safety.bat which zips all the files in the current directory to a file called safety.zip
and renames any previous safety.zip to safety.001 and any safety.001 to safety.002 etc.
Then I have a one line batch file called grab.bat which calls the grab.bat file on my
removable discs - Each removable disc 'knows', because of the custom batch file on it
which files it should be backing up. safety.bat is used before working on a project,
grab.bat can be invoked at the end of a long day without thinking when time is of the
essence to get down the pub before closing time.

And so to electronic filing
If the last section was about the joys of being organised, this one is a rule book for safe
storage. Naturally nearly all of your work is computerised. There is no perfect system
for electronic filing - there comes a point where trade-offs have to be made. Let's look
at the various aspects common to computing then those extra issues specific to
programming.

Physical storage
You can probably store all of you code, documentation, development tools, servers and
test data on a hard disc. So WCPGW physically? Of course you need good, reliable
backups. By the way, that's not any old 'of course you do' but a "STOP AND BACKUP
NOW" 'of course'. I told you this was the rule book section.

Almost the only thing I can say about your backup strategy is that it depends on what
you're trying to protect against what.405 Oh, I see you've got a Raid file server... no
problem there then ... for values of no = any eggs left in basket. Oh, I see you backup
the whole disc to tape every night... no problem there then ... for values of no =
restoring works as advertised I expect? Oh, I see all your data is copied to a laptop
daily and taken off site. No problem there then... for values of no = "now can anyone
think what was confidential on that stolen laptop?" Oh, I see you keep daily backups of
your code base. No problem there then... For values of no = "can we go back to last
December's version".

Unfortunately it is easier to point out what might possibly go wrong than for me to tell
you how to do it right. However one way to make more backups, on the principle that
at least some of them will cover the target is to make backing-up simple and quick.
Programs to do this are probably best written as batch/shell programs that can be
invoked with a standard command.406 As we'll see in a moment, different types of files
need different strategies.

PACT
A handy acronym for four logical division of hard disc data. You need to understand
this for the highest level of file structuring, and also so your programs are well designed
for the convenience of users.

Programs - Archive - Current - Temporary
Program files are sourced from elsewhere and can be re-installed. This includes
operating system, utilities and applications.
• In an ideal world configuration files are not stored with the applications
• Program files should be read-only

Programming Version 0.4 Page 342 of 356

407 A good reason for avoiding magic on-line updates. You can't recreate you system.

408 There is some truth in this last bit, but your program should be doing the work seamlessly
for them.

• Data files associated with applications shouldn't be in the program area
• You need to backup the installer as well as a snapshot.407

• Program files will only change rarely and monitoring when this happens is
probably a good idea.

Note that many program installers want to install itself in the root or mix data files and
programs. Always follow the advanced installation options to try to avoid this.

Archive files are still on hard disc, but are generally write once. This is where you plant
the root of your reference library, driver installers, customer-specific references and any
other reference resources.
• The archive will be continuously growing but files will seldom change.

Temporary files are not going to be backed up. All downloads go here to begin with as
do tests and log results and quick safety backup copies. The purpose of this area is to
avoid cluttering other areas with files which are not worth keeping or perhaps you have
just in case you need them later.

Current is where user data goes. In the case of a programmer much (but not the IDE
and utilities and 3rd party libraries) are in here. Frequent backing up is required (even
though typically only a fraction will change between backups).

Deploying your programs
Now you might be wondering why so many programs insist on running in first level
directories (ie straight off the root) or mix programs with user data and temporary files.
The answer is ignorance, arrogance and laziness plus a bit of 'the users are too thick to
work with multiple directories'.408 Nowadays, with sophisticated installation programs
easily available there is no excuse for not putting the components of your software in
the right places.

• Configuration files that are fixed at installation time should stay with the programs
and associated files in the program area. (Although in theory documentation
belongs in the archive, because it is so closely associated with a program it is
better being considered as 'program'.)

• Configurations and user preferences that change should go in the current area.
(Possibly on a user-by-user basis - you need to understand the target operating
system.)

• Data directories are of course in the current area.
• Log files will probably go in the temporary area, although audit trails might be

candidates for the archive area.

You need to tell the users and/or
administrators how files are distributed,
tell them why, and give instructions for
backing up, weeding and restoring.

If you can incorporate a one-click backup
utility then that would be excellent. It is a
good programming exercise and will be an
investment. Usability and varied target
systems make this task tricky.

Programming Version 0.4 Page 343 of 356

409 Watch the case in *nix. Decide NOW if you're going to use leading capitals or not and
stick to it.

Your own development system
You need a consistent, navigable and precisely controlled electronic filing system. In
my experience this has to adapt to deal with the restrictions imposed by various
development environments.

Having understood the PACT basics, and taken into account any security issues that
may affect your system you now have to figure out how to farm-out a lot of different
(they're relatively easy) and 'the same' (versions are horrible to deal with) types of file.

The following are suggestions to help you work out for yourself what's going to be
practical in your environment.

• Keep directory names short. eg "Dvnt" not "Development", "Ref" not "Reference"409

• All sections will divide and divide and divide.
• Set up a reference section (divided by subject of course) where your general

reference materials go.
• Set up a store section for

• Master copies of application installers, drivers, libraries. (You might keep
some of this off-line)

• Handy resources such as images.
• Any other resources that are not to be thrown away

• Set up a temporary section for almost anything: Backups, mirrors, log files,
experimental results, intermediate files, caches, trial installations.... (For what it's
worth all my downloads go to \temp\dload which lets me pick the bones out later
at my leisure.)

• Set up a programming tools section for editors, compilers, IDEs etc. You'll need to
manage this section carefully because most of it will never change but there may
be configurations and other resources that are tightly linked with the tools that will
change and can be a big pain to recreate from scratch.

• As far as possible separate from the programming tools section, set up a
programming resources section for third party components and libraries. This is a
tricky area as there are often conflicts where some items are to be shared while
others need to be in a separate space.

• You might want a separate section for servers and shared resources such as
databases which have their own sub-filing system, security considerations and
backing up requirements.

• Set up a private section for non-project items. For example invoices, timesheets,
blog and other non-programming documents.

• ...and finally one section for projects.

The proj section will develop organically. Don't be afraid to create new directories but
always make sure that when creating a directory it is specific to it's parent. After
reading chapter 14 you will probably be thinking of a handful of directories per project.
This might be overkill in the case of a relatively small item as we looked at in chapter
14, where the various files could be distinguished by a clear naming convention.
However a larger project will have correspondence, specifications, drafts, previous

Programming Version 0.4 Page 344 of 356

versions, test data and results and perhaps a couple of dozen program files. At some
stage, preferably at the beginning when you've got a feel for the depth of the task, you
can add data, docs, instln sub-directories etc.

Programming Version 0.4 Page 345 of 356

Programming Version 0.4 Page 346 of 356

G. Quality in a nutshell
I've collected a few concepts that should clear the fog surrounding 'quality'.
• Adopting them yourself will put you far in advance of the field and very efficient.
• Applying them to user's systems will be a revelation in more ways than one.
It is extremely satisfying to see how to improve things and give people the tools to do
so... ...But be prepared for deeply entrenched resistance. Unless you can find a
champion¤ you will only achieve your goals by subterfuge and fait accompli.

Quality system - QS
This is the complete machinery of delivering good results. Competence and diligence
of individuals is only a part of this - Good management is the essential ingredient.
Typically a QS has ways to know what it is trying to deliver, monitors how well things
are going, acts to correct problems and is simple enough for somebody to guide the
system and exploit ‘new-improved’ possibilities.

Quality assurance - QA
This is the confidence that everybody has in the QS to deliver what it is supposed to.
For example an annual review of safety (if carried out properly and acted upon)
contributes to our knowledge of what could go wrong and where the risky bits are and
where we must take more care. QA is not about wrapping everything up in a layers of
protective paperwork but about knowing you’re taking quality seriously, able to spot
risks in advance in order to deal with them appropriately and carrying out enough
checks to catch situations before they get out of hand.

In practical terms we’re trying to make it easier to get things right, or simple to spot
mistakes when they do happen. For example important numbers have a check-digit
which will spot common transcription errors.

Costs
If is often difficult to see a tangible result for all the effort that goes into quality.
Making an approximate estimate of the cost of the mistakes is difficult. Many mistakes
go unreported. We’re not just talking about mistakes but things that fall short of
expectations. For example a user may be unhappy because their program isn’t a
wonder cure they had hoped for - and so give up completely on getting the best out of
what is possible.

Just because it is difficult to link cost of quality to benefits doesn’t mean there isn’t one.
But the reverse of the coin is that just because you spend a fortune on quality doesn’t
mean you’ll get your money’s worth.

So lets deal with two things straight away: Defining what we’re trying to do and using
this knowledge to put the right quality systems in place in order to target our efforts for
the maximum result.

Quality goals

Programming Version 0.4 Page 347 of 356

Ask somebody what their Quality Goals are and they will probably just look at you
blankly.

Quality goals for code
In plain coding such as we did in the second half of chapter 14 the mechanical methods
used to identify WCPGW and tell the user how to use the program achieved some
quality goals that were taken for granted:

• The program must work and be useful
• The program must not crash horribly
• The user must be able to grasp how to use it
• The code must be maintainable

Often this set of goals is pretty much standard. However there may be additional risks
and costs to avoid and bonuses to be won. Perhaps the program is safety-critical and
needs to pass specified tests. Perhaps the code will be adapted for multiple languages.
Perhaps a particular sort of user will have special needs. Perhaps a 'working version'
needs to be ready by a certain date to enable another part of the project to continue. •

You can think of quality goals in this context as a combination of trapping all
WCPGWs and 'why are we getting paid'.

Achieving user's quality goals
The user's quality goals should be identified at the systems analysis and design stages.
Remember that your program should be making it easier for people to do their job
correctly - What is that job and what is 'correctly'? It is vital that you understand this.

For example why do the stores keep running out of parts when the computer says you
have plenty in stock? Perhaps it is because booking out is so tedious that it gets 'left
until later'. To achieve the quality goal of 'not running out of parts' you may need to
implement a faster or easier booking-out system.

Creating quality goals
I wrote quality goals for a NHS client. There were twelve headings the first of which
was “Detecting disease” with 13 goals one of which was “Correct diagnosis leads to
appropriate treatment.” Motherhood and apple pie you cry - Anyone could write out a
list like that. Correct! Go ahead. It really is quite easy. (A one bottle of wine job - ie.
about 3 people and 25 minutes.) It is all very well to trumpet slogans such as “Correct
diagnosis leads to appropriate treatment.” but how will we turn that into something
practical?
• By using our knowledge to investigate how we do things at the moment.
• By asking how we can measure how well we’re doing.
• By considering the methods used elsewhere that we might transplant.
• By asking what do we mean by ‘correct diagnosis’ and how, in this case, we

connect to the ‘appropriate treatment’.
• By asking ‘what can go wrong’.
• By asking ‘who should do this’.
These then lead to suggestions for improving methods, a decision to computerise the
new methods rather than rehash the current hotchpotch, and making sure that the new
systems were designed from the ground up to deliver these goals. That's how to build-
in quality.

Programming Version 0.4 Page 348 of 356

Quality goals for decision making
Another way to use the quality goals is as a set of prompts for asking questions about
suggested changes. "Everyone's using the Ruby On Rails framework - so should we"...
Hmmm. So how will that help to deliver our quality goals? Perhaps one of your quality
goals is "Keep abreast of technical innovations in programming" and another "Provide
opportunities for team members to develop their research, analysis, presentation, and
self-project-management skills" so there's a handy match between suggestion and
quality-driven reasons if it becomes "Give Karen the job of evaluating RoR and coming
up with a report and presentation".

Observation Decision Action - Transparent decision making
How obvious is it that O,D and A are separate things, requiring different tools, skills and
diligence. Although a skilled expert (and 'intelligent' instrument) is probably capable of
performing all three in one seamless activity, it would be possible to ask them (audit)
each part on its own.

Let's look at an example: Is this program ready for release?
• Observation : What's on our checklist? Do we take somebody's word for it that the

documentation is complete or review it for ourselves? Do we have tools to measure
conformance to standard - if so are they good tools well operated?

• Decision : How do we use the data collected to decide what to do? Are we
operating a plain pass-fail or something more sophisticated?

• Action : Implementing the changes, re-work, re-test and release notes.
That's so straightforward you might be wondering what the big deal is...
• There could be different actors involved at each stage. For example it might be the

programmer's job to complete a checklist and attaching test results... to be
submitted to the team leader for a decision on what happens next... which
becomes added to various people's to-do lists.

• Each stage requires different tools, skills and resources.
• Each stage can be audited separately. For example when something is released

that shouldn't have been is it because the actions weren't carried out as specified,
or because the wrong actions were decided upon, or because the observation
process was faulty? Aha! When the source of the problem can be identified like
this it can be fixed for the future.

ODA applies to the What and How of your programs:
• Where your program is supporting decision making it should endeavour to keep

O,D and A separate. Perhaps they go on separate pages of a tabsheet wizard or
perhaps you make it easy for one person to do the O and another the D with the A's
being logged communicated and chase-up watchdogs¤ set.

• Where your program is interpreting data to make decisions it needs to be clear
what is O,D and A. This should be clear in the design documentation but in small
cases it might be sufficient to put it in the code.

// O1: No login for 2 months (test weekly)
// O2: Have we sent a Ping! email and did we get a reply?
// D: If O1 but not sent ping then
// A1a : Send ping email.
// A1b Bump watchdog by 3 days.
// If O1 and no reply to ping then

Programming Version 0.4 Page 349 of 356

410 The bug in this logic should be obvious - That's the point of laying it out clearly.

// A2a : Suspend account
// A2b : Alert administrator410

If your program is doing complex decision making but giving a dumbed-down
traffic-light answer you should still be able to expose your workings in test-mode
and you might want to log it's suggested or actual actions against data inputs for
auditing or process improvement.

Basic quality implementation principles
With one important exception the only way to operate a quality system is to:
1 determine what you’re trying to achieve
2 monitor your performance
3 take a view on what sort of corrective actions are required
4 implement change at the right place
5 repeat.
This is the principle of feedback.

It means you have to have some way of monitoring what’s going on which is why there
has been so little of it - Somebody has to keep records and be able to take management
decisions based on an analysis of the data. Too difficult! - For all sorts of reasons that
boil down to lack of organisation and leadership.

The traditional method, which isn’t efficient, effective or economical is to use an ever
bigger scatter-gun approach of polishing up professional skills and finding more things
to tick in more detail. Does anybody think drivers would be better if they had a test
every week or had to learn the road traffic acts off by heart? This approach just hopes
that something useful will rub off. Things that are difficult to measure are left off the
ticklists and going through the motions replaces getting to grips with identified issues.

The important exception to the above is safety where you don’t want to wait until you
get an accident before doing something about it. Even so the principle of near-miss
reporting is a feedback process and for obvious reasons needs to be developed.

Programs to help
Your programs will be involved with all sorts of matters that affect quality. To take a
simple example your on-line ordering system is supposed, amongst other things, to
support shipping the right goods to the right place at the right time. Sometimes there
will be problems. Can your system be used to quantify the problems and track back to
causes? What can you do to your system to make identified problems less likely -
perhaps a double-check, or a bar-code or a total item count for each shipment and so
on.

Risk

Thinking like this will revolutionise your approach to program design.
You'll find all sorts of little checks going and exception reporting going
in. (But see the warning at the top of this appendix.)

Programming Version 0.4 Page 350 of 356

I briefly touched upon the subject of risk earlier. Risk assessment can be an excuse for
extended protective paperwork or sensible appreciation of where risks lie and what to
do about those that can’t be designed-out of the system.

Probably the most useful thing people can do is increase their risk awareness.
Consequences may happen far removed from the original mistake, or events may be so
rare (or rarely discovered - not quite the same thing) as to be hidden from the people
who need to be on their guard. Therefore an event reporting system is required with
enough hints added for people to recognise their exposure to making the same error.

Finally on this topic there are many activities with low risk (or where errors are easily
spotted) which should not get the same attention as high risk ones. This seems obvious
when written down here but bureaucracies don’t work like that. You have been
warned!

Bad - Good - Best
You can’t lump all matters relating to let’s say ‘professional standards’ together.
Dealing with alcoholics and Masters degrees in the same way is plainly barmy.
Hence the Bad-Good-Best model:
• Bad practice is that which we won’t countenance and is basically a list of Don’t!’s.
• Good practice is the standard we expect from most people all of the time or all

people most of the time.
• Best practice is what we would like everyone to aspire to but realistically expect a

• Risk is an estimated statistic. Estimates may be anything from received
wisdom to well specified, up-to date, locally collected and analysed data.

• The consequences of risk tell us the importance of getting it right.
• The rarity indicates different approaches. An important but rare risk may

need awareness to be refreshed from time to time.
• The immediacy of risk tells how quickly we need to respond. Practice

exercises may be required.
• The visibility of risk tells how easy it is to spot a situation.
• The graduation of risk indicates how we might get away with a small mistake

or a ‘this works most of the time' and not lose the whole game. Dealing with a
graduated risk like this requires a way to catch the small proportion that we
didn't get with our first attempt.

• The diligence requirement (of the way we handle) a risk is an extremely
important indicator of the sort of training, calibre of staff and checking
necessary. High-diligence and high-risk together are to be avoided. Good
procedures can reduce the diligence requirement.

• The cost of prevention is always something of concern and something that we
would like to reduce if possible. Technology, techniques, imagination and
alternative methods are things used here. Note: There is little kudos to be
obtained from making a problem go away when compared to a heroic battle.
It is also very difficult to join-up funds and data between prevention and cure.

• The counter-risk is the risk associated with dealing with the original risk.
Treatment may have side effects.

Programming Version 0.4 Page 351 of 356

411 As do ordinary people, but there's a tendency to 'let them get away with it' which can be
exploited to develop to the prima donna stage which can upset middle-of-the-road types.

few highly motivated people to acquire specialist competencies.

Activators
Bad Complaints and catastrophes
Good Initial training, keeping up with developments, auditing
BestPersonal motivation, group leadership and support

Moderators
Bad Rule book (Contract of employment)
Good Standards documentation, informative articles, team spirit
BestProfessional development programme, research

The important aspects of BGB related to programming are:
• People in the Best category are usually streets ahead in all respects, typically many

times more productive and accurate. Also they're capable of dealing with unusual
situations and dealing sensibly with risks. Often they have good awareness of their
limitations - though what to them is a limitation might be exceptional to an
average person.

• Some of the Best people have annoying personal habits and personality defects411

which need careful handling.
• Software might be used to trap bad practice. For example to alert when somebody

hasn't responded to a customer query within a set time. A lot of this comes down
to enforcing procedures from simple correct form completion to spotting a
mismatch between requests and responses.

Real quality
The expensive way is to bolt-on numerous onerous tasks to everyday procedures. It is
doubtful whether this has any positive effect at all.

The real way is to
• Establish quality goals
• Get people to buy-in to the goals or get-out
• Show them how to achieve these gaols and give them the necessary tools
• Accept the cost of doing the job well is inherent (but (with the exception of safety)

more effectively spent than on scatter-gun preventive measures.)
• Monitor and manage

Review
There are two ways to implement quality:
• Waffle, paperwork, lip-service
• Establishing quality goals, giving them to people to implement in their daily jobs

then monitoring how well they perform.

From a programmer's perspective there are two realms of application
• The quality of their own work

Programming Version 0.4 Page 352 of 356

• Assisting users to make good quality come easily

Likewise BGB is applicable to programming and the environment programs will be run
in.

Don't forget that unless Observation, Decision and Action are separated it won't be
possible to 'debug' decision making. This applies within a program and the application
environment.

Programming Version 0.4 Page 353 of 356

H. Two quick
management tools

These two back-of-the-envelope tools are very briefly described to give you a framework
for collecting and analysing management information. They should help to clarify
decision making at the start of projects and give you some pointers to the project
monitoring required.

From a real programmer's point of view the important thing is having the concepts
ready to hand in your mind so you can use then even without an envelope. You may
want to use them formally when trying to get your strategy across or pointing out where
there's a lack of coherence in management thinking.

Object-Methods
What are you trying to do? When was the last time you sat down and listed your
objectives? By putting these in writing don’t you think that will
• clarify your thoughts
• help to prioritise your ambitions
• be an agenda for discussion?

How are you going to do it? If you listed the alternative methods against each objective
would that:
• form the basis for discussion
• highlight areas of weak strategy
• eventually become an agreed plan of action?

If you can see the benefits of doing this then divide a page down the middle and write
objectives in the left hand column and corresponding methods on the right.

Ref
no

Why Objective Method Tactics Respon-
sibility
Remarks
Restrictions

Optional
reference

Optional
motivation for
wanting to
achieve the
objective

What is to be
achieved

How it might
be achieved.
- Options
- Alternatives

Detailed
implementation
issues.
Optional

Optional notes

There’s nothing difficult or startling about this tool. The surprising thing is that it is so
rarely used. At this point it is best to have a go on a subject of your choice.

Programming Version 0.4 Page 354 of 356

Although in simple O-M back-of-the-envelope form it is a strong tool there's a lot more
detail to be exploited by using it in a structured management environment with the bits
on the side.

Factors
What makes a project successful?
We all know of projects that fizzled out, were wrongly conceived, suffered too many
‘unforseen’ circumstances were vaguely managed, and limped home. “If only...” is the
cry of hindsight. But managers are paid for their foresight and ability to grasp a
situation. If you don’t see a problem or a potential ahead of time and don’t keep a
sufficient eye on its development and fail to make contingency plans and get distracted
by less important issues then what do you expect?

FACTORS is a simple back-of-the-envelope method of listing those factors that
contribute to the positive or negative outcome of a project. This is ideal personal
preparation for project planning meetings, and with a slight refinement, highlights the
questions to be asked at progress meetings.

Factors is simply a table of issues, management involvement and preventive or
corrective action. This method seeks to stimulate avenues of possibilities and is not a
quantitive or in-depth project management tool. Having assisted in focussing foresight
and assessing potential impact of factors, it then serves as a reminder of those issues
that require surveillance.

Method outline
Take any project.
• What factors are directly down to management to control? For example getting the

right people for the job, avoiding the holiday period, ensuring the specification is
final before starting. These are called success factors. This focusses on the way
you drive the project.

• Which factors or events are not under your direct control. For example a supplier
gets behind schedule making you late. These failure factors are quite probable
events that are ‘not in the plan’ over which you may have some influence.

• The third category of factors are luck. You just have to put up with these if your
project depends on them, but at the planning stage you may choose a less risky
strategy.

Failure and Luck factors show where contingency plans are desirable.

You may have picked up from the above that Success factors are positive, while Failure
and Luck factors are negative. This is not the case. A positive luck factor is where a
fortunate circumstance, say a competitor’s blunder, puts you in a position where you
can take an advantage - IF you can recognise the opportunity and IF you happen to be
in a position to exploit it. An example of a negative success factor might be where you
know there will be repercussions unless you take avoiding action. (It turns out that it is
far more important to identify as many factors as possible rather than strictly categorise
them - often there are shades of grey between the three types of factor and the sense of
whether a factor is positive or negative may be opposite sides of the same coin.)

Programming Version 0.4 Page 355 of 356

However it is a useful discipline to decide if each factor is central or peripheral. There
are two reasons for doing this. It helps keep discussions focussed on core issues.
Secondly, a matter that will appeal to those who are not content with doing a job but
must do it well, highlighting where marginal effort can result in significant
improvement in overall performance and profit. For example a result that is good
enough to win an award will naturally be more attractive to potential purchasers. The
effort to get that award may be, for sake of argument, reading the rules of the
competition carefully and employing an industrial designer to turn ‘just another’ into
‘the one to beat’. This makes the Factors method suitable for both keeping
management aware of essentials and inspire them to get beyond the mediocre.

At a project planning meeting a table of Factors could be brainstormed from scratch, or
presented in the form of a skeleton strategy for refinement by the project proposer. It
can be used as personal preparation or as the basis for group discussions. Having
described the factor and categorised it two more columns in the list are provided.
Firstly a ‘concern’ column. Is there serious risk of this getting out of control, or will a
periodic review be sufficient, or is there nothing to worry about. Three simple options.
Focussing concern is an important management function, as a manager can hardly
deal with everything at once will often cause more confusion and unnecessary work
than one who leaves things in capable hands while addressing the few issues.
Associated with this is an ‘Action’ column. What management action is to be taken?
For example, suppose as part of the initial planning we’d established that supplier X
simply had to deliver their component on time. A prudent manager would recognise
this as a trigger to keep a watch on this supplier’s progress and probably see this as a
prompt to set up a management reporting system. (The ‘central’ categorisation of the
factor also tells the manager that the quality of this information needs to be assured.)

The reason that this tool is so simple is that it concentrates on management strategy
and tactics rather than catch-all project management. It is a framework for organising
thoughts, an agenda for finalising strategy, a check list for being prepared for
mischance and opportunity, and a tool for directing management efforts.

Factors table
As many rows as you like with the following columns
•Ref

In formal situations it helps to have a reference number
•Factor

One of: Success, Failure or Luck (Or a graphic)
•Impact

One of: Major or Peripheral (Or a graphic)
You can make a rough assessment of the impact of a factor without needing to
undertake a formal risk analysis. You may wish to investigate knotty problems
in more details as a result of concluding you have a major potential problem.
Note. From a profitability point of view peripheral factors are quite important.

•Description of influence
Achievement, event, or issue described briefly. This is not intended to be a
complete description, simply a summing-up in a nutshell. The best
descriptions contain a definition of something that may happen and how it
may be influenced by an event. These tend to fall into two categories:

Programming Version 0.4 Page 356 of 356

1 Event - Situation eg. "If the software arrives late our schedule will be
delayed"

2 Situation - Action eg. "If we can't use our existing staff we will need to hire
more."
Both modes might be combined. For example: "If the software is late, the rest
of our schedule will need to be speeded up avoid late delivery penalty clauses."

•Concern
One of Immediate and urgent, Keep under scrutiny, No worries (Or graphic)
This shows the degree of concern that this issue is being handled correctly.
As a manager reviewing a proposal or monitoring progress you may be looking
at your Factors listing as preparation for a meeting or to assure yourself that
everything is on course. This column is for your reference as a guide to the
importance of taking action or preventing a mistake.

•Action
Management action. Text describing, in a nutshell, what management action
is to be taken.

