
Overview.wpd(b) Page 1 of 7

Overview

Function
There are many situations where a database needs to be ‘exported’ though the data

must be sanitized to remove personal and business information. DataBender is a tool to

do this securely and flexibly. For example the initial stimulus was to be able to show

potential clients database systems that I’d written for others. Almost any organisation

that uses live data will want a simple and secure method to create dummy data. Any

such system will need to be keyed-in to compliance rules regarding personal and

confidential privacy.

Uses
Allowing training, demonstration and system development on a fully functional and

representative database without exposing confidential details or business statistics.

Providing a secure, reliable and verifiable data export mechanism.

Creating pseudo datasets for training, demonstration and system development and

providing simulated export data.

Key features...
Exporting is a controlled process from start to finish.

Business needs are documented and drive the technical implementation.

Compliance with good practice is demonstrable.

Efficient and accurate physical exports according to defined procedures.

...Deliver
Leak-blocking awareness... ...and no excuse not to implement it.

Auditable procedures

Necessity
There are many cases where large amounts of private information have been exposed

by large organisations through incompetence, indifference and slippery-nature of

database administration. This affects smaller organisations as well who can hold a

Overview.wpd(b) Page 2 of 7

surprisingly large amount of confidential and compromising information. Anybody who

looks after almost any data is sooner or later going to be confronted by the need to allow

access beside the officially secure everyday access methods. For example a travelling

salesperson may need some personal details on their laptop but only relevant records

and only partial data. Or an external auditor may need records which need to be

anonymous, representative, and yet traceable should specific situations need to be

followed up. Someone might want to analyse types of transactions statistically, so all

confidential data needs obscuring first. Expansion into a new country may need ‘a safe

clone’ of the database to get started, firstly for demonstration, then customising, then

training.

In all of these cases a database administrator might be tempted to allow export of data

without any filtering, simply because they don’t have the tools tied-in to their

compliance needs. Compliance officers might be tempted to follow the path of least

resistance and trust the third parties rather than make a difficult database strip-down a

requirement. We’ve seen this happen at HMRC in an unbelievably slap-dash fashion

even when the auditors requested personal details at least obfuscated.

With the advent of DataBender there are no excuses for letting any data out of the

database without implementing a security policy for that purpose. It is simple to

configure, keyed to security policies, flexible and tunable and verifiable.

Example
Suppose that I am selling medicines to private individuals. I want to create a dummy

system that I can use for staff training. Also from time to time I review my product

range in the light of turnover and customer profile to inform my business strategy.

There may be thirdly and fourthly and morely from auditors and regulators, but that’s

enough for now.

We can now start the business analysis

1. I have some data in a database. I know roughly the structure and significance of

the record contents.

CUSTOMER : Name, address, gender, age, our-ID (etc)

TRANSACTION : Product-ID, Value, Qty, Staff-ID, Encrypted cc, Date (etc)

PRODUCT : Product-ID,Supplier, Name, Drug class, Cost price, Retail price (etc)

STAFF : Staff-ID, Name, Qualifications, Role, Password-Hash (etc)

2. I have some purposes for which the exports are being made

Purpose 1: Training (and system development)

Purpose 2 : Sales profile analysis

Now where am I going to document my security policies? Why not let DataBender help

me by providing data-related, and purpose-related hooks. By the way, notice that some

of the security leakage I want to avoid is record-based (eg How old is Mr Jim Smith and

what medications does he take) and some is table-based (eg What is my monthly

turnover and profit.)

Overview.wpd(b) Page 3 of 7

DataBender can discover the structure of the database (ie. database schema) and use

that to start documenting what we’re going to do with the data. The latter will vary

from purpose to purpose. For example for training I might specify CUSTOMER records

to be limited to 50 and have all real name and address data replaced with fake data and

shuffle the our-ID values (to prevent cross reference lookup from training to real system).

For the sales profile analysis, which I take home on my laptop to play with, the same

considerations apply without the table size limit. The training purpose will need

completely fake STAFF but for my sales analysis I’ll need to know actual details so I can

see who sold how much. But I won’t need any payroll or home phone numbers so

should be sure to wipe or fake these before allowing the data out of the locked server

room onto my loose laptop. We will continue with this example later.

Implementing bends
Even though DataBender hasn’t actually hacked any data yet it should be obvious that

we are already serving an important regulatory role of specifying the circumstances

under which data may be ‘allowed out’. Everything is in one place with variations and

details being covered. The next step is to implement some actual ‘bending’.

Every ‘bend’ can be regarded as a module that modifies either a table or records

(possibly related). Simple table bends might be reducing the number of records to a

random or ‘representative’ sample, or creating dummy data from pools of options. Of

course, given the way tables are related we can expect these objectives are anything

but simple when we want to tie up the loose ends. That’s what a computer is for; we

may have to give it heuristics but otherwise it knows where relations lead. Simple field-

based bends may be used to obscure, remove or delete data by say replacing names and

addresses with fakes. Again practice is more complex than theory where we may need

to replace many cross-reference links together, or to keep the same data values but

shuffle it amongst the records or reshape some statistics whilst retaining a degree of

verisimilitude. We might want to add noise to make external cross references difficult

while not damaging the purpose of the exercise. For example we may jitter dates of

birth by plus and minus a couple of months and shuffle all the post codes so we have

the same actual number of records per postcode but they aren’t the real transactions.

Of course this sort of hacking is an art of obscuring details without jeopardising the

value of whatever analysis exercise we’re engaged in. One way of estimating the

perturbation of the end result is to produce a number of sample data sets on which the

analysis can be performed: If results concur then it looks like a safe method.

Example part two
Let’s look at how we might bend the data for the purpose of creating a parallel training

and development database that is realistic but ‘safe’. We have already identified the

fields to be protected now we have to implement the alterations.

Random replacement bending
For the CUSTOMER name and address we want real names replaced by false ones. To

do this we’ll need templates and pools of data to select from. (I call these sources of

Overview.wpd(b) Page 4 of 7

inserted or replaced data ‘cartridges’.) For our purpose the cartridge might be a simple

text file with four fields which we’ll select from randomly according to a template:

Cartridge data Templates

John/Smith/1 High St./Wimbledon CUSTOMER.Name = $1 $2

Mary/Jones/2 Laburnum villas/ Colchester CUSTOMER.Address = $3,$4

Tim/Brown/123 Richmond Rd./ Sevenoaks

(and so on)

Giving records like “Tim Smith”,”2 Laburnum villas, Sevenoaks”

The cartridge data doesn’t have to be arbitrary text, we might instead be selecting from

another table (ie. database data based) or enumeration (ie. database schema-based).

Suppose for example that we were substituting the actual product purchased into the

TRANSACTION records then we would use the PRODUCT.ID field as our source.

In the example we decided that we shouldn’t use real our-IDs as somebody might relate

id number 456 in the dummy data to the real 456 after they’ve done their training. Now

we want to do two things: Firstly substitute random (and different) numbers into the

PERSON.our-ID field and secondly to distribute that replacement throughout the related

tables making sure that the data such as transactions still hangs together even if the

foreign key relation value has changed.

Shuffling record bending
We may need to retain actual data values, possibly a group of associated fields, while

detaching them from their original record. In the example I might be very sensitive

about how much trade I do with specific suppliers and definitely don’t want any

programmer doing a one line SELECT to discover this. To get round this I could do two

things with the product table: Substitute the product name and substitute the supplier.

This is hard work because I’d need to think up a new name for each product.

Alternatively I could shuffle the product names - put all the names into a hat and

reallocate them at random.

I could do the same with the supplier field as well. Reallocating supplier names means

that • the system is still useable in everyday ways • statistical patterns (such as the

turnover we do with my top three suppliers) are preserved • the real names might be

guessable. Therefore shuffling may not be a very good way of achieving our security

goals but it can be a good way to break actual data re-discovery. If I was giving data to

a distribution company so they could quote for my delivery patterns then shuffling the

post codes of customers (amongst other things) would retain the realism of the data.

Encoded and indexed substitution bending
A regulator may want to analyse my sales to spot signs of misuse or mis-selling of

drugs. I’m not too keen on giving them access to every single trade but that’s what

they need to be able to spot dodgy staff or unusual patterns. So (amongst other things) I

might replace the actual name of the drug with “Product 001", “Product 002" etc. and

do the same for customer and staff names. If the regulator spots an abnormal pattern

Overview.wpd(b) Page 5 of 7

and need the details they can come back and ask.

Of course it is possible to encrypt data values but there are business and technical

difficulties which often make this a poor choice.

Jitter bending
As above, I’m not too happy about people knowing exactly what I pay for my supplies.

Therefore I will alter the Cost Price and Retail Price in PRODUCT by ‘something’. For a

demonstration and development system I might say plus or minus 5 to 20%. Thus

individual data records ‘look about right’ without being accurate.

Record weeding bending
Typically for a training or development system we don’t want a large database. For one

thing small tables are more easily tweaked. So we might reasonably set some targets

for the number of records we want in key tables. An obvious way to do this is pick

records at random until we’ve got enough. A more sophisticated method is to attempt

to preserve or pervert some statistical characteristic. Suppose in my example database

I decided to reduce the number of products to 20. This will have an immediate knock-

on effect in weeding the associated redundant TRANSACTION records. DataBender

can do this automatically. There is a secondary effect in weeding customers who have

never brought these products. DataBender can make it simple to do this secondary

weed.

Record expansion bending
For the purposes of generating test data it is often useful to use a sample of existing

data as a basis for replication. Often test data is hand-crafted to meet specific needs,

but sometimes it is convenient to create larger quantities of pseudo data. The developer

of my example system might be required to demonstrate that complex procedures

governing which staff can do what transaction are correctly implemented. Initial

assurance might be by special test examples but after a while in service values, rules

and parameters change and being able to use representative data rather than specially

formulated data might be necessary.

Types of export
The top-level distinction between types of export is:

• All or large parts of the schema with some data

• One set of SELECT results

These are quire different in scope although bending will apply to both.

In addition DataBender has a built-in sub-setting facility so that multiple parallel

exports can be created in one pass. We might use this to export monthly sales data to

regional directors.

Overview.wpd(b) Page 6 of 7

Packaging and distribution
The mundane physical aspects of export are a common source of data loss. Typically a

junior clerk is given the job of copying data onto a CD then sending it to 'somebody'.

DataBender deals with formatting, encryption, signing, credentials and key

management, audit trail and managing sub-sets even to the extent of being able to

automatically email sub-sets to designated addresses from within the original database.

Furthermore this data manipulation, version control and logging are carried out in a

designated 'secure' location with a clean-up afterwards to avoid leaking loose temporary

files.

Why bother?
At this stage programmers are probably thinking that this sounds like a lot of hassle

which could be achieved with a few lines of SQL and a bit of code to jiggle with random

substitutions. Unfortunately that’s not the business solution because we need a reliable

system tied into the compliance requirements which is flexible enough to adapt and

straightforward enough so that there are no excuses for forgetting, fumbling and even

making things worse.

DataBender is a procedural firewall and as part of the security system is a high priority

target which needs simple rules for operation in an environment that makes it difficult

to hide unauthorised code. Part of this is specifying a standard operating procedure

which means a data administrator has a clear set of steps to follow regardless of the

purpose of the export. This means that operation and configuration can be

independently assessed if required and also that new export requirements can be easily

implemented with confidence.

Architecture
Hardware : Ideally DataBender would be run in a tightly controlled environment and

use a separate database server. As many files as possible are in plain text. ‘What goes

where’ is specified so that for example temporary files are always identified and deleted

as appropriate.

Process : A description of the database is initially retrieved from the server. This is

used as a framework for additional structural information, change recognition and

security policies at all levels (database, purpose, table, purpose/table, field,

purpose/field). This is followed by specification of bending methods and applying them.

Applying methods could be done ‘at the click of a button’ when repetitive exporting is

required. The exportable data is now available for export and all other working data can

be erased. Additionally log reports and tests on the export data to confirm successful

bending are available.

Data : Everything revolves around a database description. This contains policies,

method parameters, result summaries and statistics.

Overview.wpd(b) Page 7 of 7

Cascade and redundancy engine : One of the objectives is to ensure that the

finished export is consistent. A simple example is deleting child records when a parent

is deleted but in practice dealing with links is a very complex and sophisticated process.

An easy to understand version of this is what do we do if being asked to remove the

last/only child record? Should the parent be marked for deletion? The order and options

involved in cascading are important and subtle.

The key elements are:

• Database describer that builds and compares differences the basic database

description. This is ‘pointed at’ a database in order to extract schema information.

When being re-run it looks for alterations. It provides a way for additional schema

information to be set-up, for example it may not be possible to discover foreign keys.

• Policy documenter which uses the database description and one or more purposes

to provide a structured set of security policies.

• Method specifier used to define the bending operations to be used.

• Extractor-Bender which may steal data from the main server. (Simply as a clone,

but possibly bending the most sensitive data by omission before it reaches the

DataBender environment.)

• Bender which does all remaining bending.

• Data analyser which performs analysis on selected fields ‘before and after’ to show

the nature of changes and confirm bending has been carried out successfully.

• Utilities for creating cartridges, doing a data export, reporting and housekeeping.

All calls to bending methods are carried out using a defined namespace to enable

plugin and derivative routines to be patched-in as required. This makes customised

bending a matter of being able to write single purpose routines. (Using PHP in the

prototype.)

Conclusion
There is a pressing business need to be able to sanitize database data and implement

robust, efficient and appropriate physical exporting. To make sure this is done

effectively it has to be driven by a managerial process using documented and quality

assured methods. DataBender connects this process with the technicalities of doing a

good job of sanitizing. A single tool serves all levels of involvement from supervisory

management through to the junior who dispatches CDs. It deals with security policies,

usage agreements, and making it easy for everybody involved to do the job correctly.

For more information contact Peter Fox : databender@peterfox.ukfsn.org

© Peter Fox 2009

