
A standard for real-world dates

Peter Fox author@vulpeculox.net

Status of this document

November 2013: New version.

Contents
This is the complete D/a/y specification. (Tools, test-cases, learning resources
and implementation specific details are documented separately.)

I Overview
1 Introduction - Dates are not all points in time
2 Definitions
3 Model
4 Encoding schemes
5 Operations

II Representation
1 General
2 Logical signatures
3 32bit encoding scheme
4 Unix timestamp encoding scheme
5 Encoding wrinkles
6 Invalid reasons
7 Integer sorting
8 Constants
9 Limits
10 Notes

III Functions
1 Background
2 Functions taking no arguments
3 Tests taking a single day argument and returning a boolean
4 Functions taking a single day argument and returning a day
5 Other single argument functions
6 Functions taking two arguments returning boolean
7 Functions taking two arguments returning scalar
8 Functions taking two arguments returning Day
9 Output conversion functions
10 Input conversion functions
11 Environment and utility functions

IV Internationalisation
1 Accessing an appendix
2 Logical contents overview
3 Physical layout
4 Appendix en-uk
5 Low level functions

I Overview
Page 3 of 39

Overview
In this part we describe the model and usage.

1 Introduction - Dates are not all points in time
Being able to specify dates precisely, approximately or abstractly is magic when you come
to write real-world applications where data is imperfect or not yet available.

Q: When was some book published?
A: 2007

Q: When was the author born?
A: 14th June 1964

Q: When did they die?
A: Not yet!

Q: When is their next book coming out?
A: February

Q: When did they win the Booker Prize?
A: Unknown

Q: When did they win the Nobel prize for literature?
A: Never

How do you store “Beginning of time”, “Unknown”, “September”, “2004" , “Last day of
February” and “14th June 2007" using the same metric, integer or database column? Is
“June 2007" earlier than “14th June 2007"? - Or later? Or both?

The trouble is we’re trying to store abstracts, ranges and points in time all together. The
traditional method of storing dates on computer is to model a timeline divided into days,
seconds or milliseconds. This falls flat when we want to indicate, perfectly legitimately, a
non-point in time. Suppose for example I have a database of assets with acquisition and
disposal dates. What do I put in the “date sold” column when I’ve still got the item? If I
put in a dummy date of say the 31st December 2099 any calculations I try to see how
frequently I modernise my assets will be bonkers. If I’m planning a year ahead then I
might set some activity to happen in “September 2016” (my holiday for example). This
should not be appearing as “one day’s holiday on the 1st September”.

There are more complications when we want to use an interval measure which isn't quite
the same thing as either the number of days or a calender date.

A specification has been created for:–
(a) A model for specifying dates with resolutions down to individual days.
(b) A 32 bit unsigned integer and y-m-d h:m:s compatible encoding schemes
(c) Method specifications for an implementation of methods
(d) A framework for helper methods for text input, display and internationalisation.

I Overview
Page 4 of 39

1 WARNING: Some people misuse Julian Date to mean the "ordinal date" which is
the number of the day in the year.

There is a lot more detail here than most people need to know just to get started with
D/a/ys, however it is important to recognise that when we depart from a simple timeline
life gets more complicated and simple arithmetic is no longer enough. Still, as that’s the
way the real world works so we’d better get to grips with it.

2 Definitions
Calendar date

This is 'a date that might appear on a calendar'.
• Just a year
• Just a year and month
• A year month and day

Floating date
This applies to days with unspecified 'more significant' components. ie.
• Only month and day components specified eg. Birthday
• Only day component specified eg. Monthly pay day

Fully specified date
A calendar date where the three elements, year, month and day are defined and real.

Interval
A d/a/y object may be used to explicitly represent a time period expressed
as ±,Y,M,D.
• The sign applies to the whole.
• Intervals should not be used to represent dates.

Julian date
The number of days elapsed January 1st 4713 BC. For our purposes a serial number for
days which always 'counts one' every 24 hours. This only applies to fully specified
dates, but where this holds we can do exact date arithmetic.1

Period
A date never specifies a moment in time. The least span of time it covers is 24 hours.
The Period of a date is the full range of possible dates that it might cover. For example
"May 2007" covers a Period from "1st May 2007" to "31st May 2007" inclusive.

Note. Do not get the terminology of Periods mixed up with Intervals. An Interval is a
particular type of Day object. A Period is a lack of Precision.

Precision
Analogous to numerical precision when dates are specified as Y-M-D with Y being the
most and D being least significant.

Signature
A top-level indicator of the type of value contained in a day encoding. Described in
part II.

I Overview
Page 5 of 39

3 Model
Logical representation

Let us define an object that is capable of representing the following 'dates':
Abstracts

Not a valid date An error (NV)
Unknown Not known (NK)
Beginning of time Some unspecified time in the past (BoT)
End of time Some unspecified time in the future (EoT)

Floating labels
Some month eg March
Some day eg 15th

Last day of... eg Last day of February
Ranges

Some year eg 2007
Some year+month eg March 2007

Fully specified dates
Some y+m+d eg 4th August 1976
Last day of y+m eg Last day of February 2008

We also need to be clear about intervals. 1 year is not the same thing as 365 days and
months are worse! (Suppose our planned project is now scheduled to start on the first of
March instead of the first of February. Do we add 1 month or 28 days to all our task start
and end dates?)

An interval is composed of four elements. A sign, zero or some years, zero or some months,
zero or some days. Intervals are simply a convenient way to express time differences
without having to guess how many days to a month or year.

Operations

Firstly we need to recognise that date arithmetic is going to be problematical unless we’re
working with fully specified days. If we are then we can do things like:

"How many days difference between FSD1 and FSD2 ?"
If we’re dealing with floating months or Y+M (both operands being the same) we can
sensibly find a difference in months (or years and months). Similarly 2006 minus 1945
gives 61 years.

We can do comparisons with varying types of d/a/y. For example “Is 14th March 2008
before June 2008?" This leads us to a tricky area. Is “March 2008 before 14th March 2008?”
and “Is 14th March 2008 before March 2008?” One school of thought goes: “Since we’re
bound to need an ordering sequence let’s use that as our definition of ‘before’” A better
alternative goes: “We need to look at the meaning we attach to these values more carefully
before jumping to a conclusion.” Consider what happens if a time-elf travels forward in
time during 2008. In order, the elf comes across February, Last day of February, March,
March 1st,...March 14th. So the elf can say “I’ve arrived at ‘March’ before arriving at ‘14th

March’” and therefore “March is before 14th March”. However the same argument applies
if the time-elf is going backwards in time from April; as it moves from April to March the
elf ‘arrives at March’ before ‘arriving at 14th March”. The results so far are:

Is March before 14th March? Yes Is March after 14th March? Yes
Is 14th March before March? No Is 14th March after March? No.

I Overview
Page 6 of 39

2This eventually leads to an interesting anomaly giving a zero result if we ask what’s
the difference between BeginningOfTime and EndOfTime!

If we were dealing exclusively with points on a timeline we could say that “is D1 before D2"
is true then “is D1 after D2" must be false (and vice versa). But ranges break this logic.
Similar considerations apply to years.

However there is another operation we can do: “Is 14th March contained by March?”.
What this means is that we have to think a little bit differently, taking account of the way
dates are used in the real world, in order to work with them and at least get something
useful out when we try to manipulate them. For example “How long have you had that
plaster cast on your leg?” Our database will contain the date it went on (say 3rd Feb 2008)
and the date it came off, which it hasn’t yet, of either Unknown or End-of-time. Hopefully
the question will turn into “How long was it ...” when the date it came off is now a fully
qualified date and we’d be able to do conventional date arithmetic.

PlasterDuration = DaysDifference(DateOn , DateOff);
So, taking the last case first:

PlasterDuration = DaysDifference('3 Feb 08','18 Mar 08'); // Easy: 44 days
Now for the tricky case of 'not-yet':

PlasterDuration = DaysDifference('3 Feb 08','End-of-time'); //?
or
PlasterDuration = DaysDifference('3 Feb 08','Not known'); //?

What do we mean here? Do we want to return infinity? Probably we actually want to
return the number of days between 3rd Feb and today. So if today is 11th March this will
give us a result of 37 days and counting. This makes immediate sense if we want to know
how old somebody is whether or not they’re still living. This means that the logic for the
days difference function (simplified for illustration) goes like:-

Is second date EndOfTime? If so then use Today as the operative date value.2

Converting to linear time

Now we’re in real trouble because linear time simply can’t represent the concepts we’ve
got in D/a/y-time. We can only relax if all our dates are fully qualified, but that’s unlikely
as we wouldn’t be using this scheme if life was that simple. A D+M+Y can easily (subject
to operating system and programming language restrictions) be converted into common
linear times such as timestamps as used globally by databases and operating systems.

We are going to need some hack. One way we can approach this is to attempt to get linear
time mapped to a sort order. So how do we sort say the following: 2007, 2008, Feb 2008,
Feb 1st 2008, Feb 28th 2008 , Feb 29th 2008, Last day of Feb 2008, March 2008, 14th March
2008 and 2009? The order I’ve given is what I think is sensible, but as we’ve seen above
“March 2008” comes just as much after “March 14th 2008" as before it. Also the leap year
makes “Last day of Feb” (a) variable between years and possibly undefined if a year isn’t
given and (b) identical to (in this case) Feb 29th. It’s probably going to be convenient if
EndOfTime is at the end, but really it ought to be off end of the scale and NotValid
shouldn’t be there at all!

For practical purposes we want to achieve some interoperability between, lets call them
'timestamps', and d/a/ys. It looks like we need to treat fully qualified dates as standard
with hacks for the unusual ones which are slipped in between the standard dates. We can
achieve this fairly simply if we recognise that timestamps have a much greater resolution
than a day. So for example “1st March 08" will be represented in a timestamp form as “zero

I Overview
Page 7 of 39

milliseconds after midnight on 1st March 08" (or something similar). So What about “March
08"? This wants to come before the 1st if we’re to emulate the sorting scheme just
described. As it stands we have no room before trampling onto “23:59:59 on the 29th Feb”.
Obviously we’ll have to declare something like “standard days will have their ‘time bits’ set
to noon” to give us room earlier in the day to put in a fake timestamp for our specials.
There are two layers of this with months and years. 1st Jan 2008 can’t be zero milliseconds
after midnight on 1-1-2008 because that doesn’t leave room for plain 2008.

Do we want to be able to convert timestamps into d/a/ys? Yes. There may be
communicating applications that ‘talk timestamp’. If they are educated enough to tell us
about special cases, particularly the constants BoT, EoT, NK and NV we can give them a
some very useful functionality we enjoy with d/a/ys at a stroke.

Model summary

To represent what happens in the real world we need to break away from linear time. We
can still manipulate dates but the rules and results are more complex.

4 Encoding schemes
For the purpose of interoperation we need standard encoding schemes. Two schemes are
specified.

a 32 bit unsigned integer
b Adapting y-m-d h:m:s values

All encodings should return exactly the same sequence when sorted numerically.

General

All encodings are lossless.

The Unix timestamp potentially suffers from limited year range (1902-2037)

The native 32 bit encoding gives +/- 4 millennia so for practical purposes there is no need
to obtain an offset for the year ‘from somewhere’. Spare bits in the encoding are used to
store shortcut information.

Intervals are identifiable as being distinct from dates. They should sort numerically in all
encodings with from the most negative to the most positive. There is not meant to be any
correlation between the encoded values of say the day "12th March" and the interval
"+0y3m12d".

Special signatures

We define the following constants as signatures to be used as the most significant bits of
the 32bit encoding scheme

I Overview
Page 8 of 39

Table 1

Mnemonic Meaning Binary

NVI Invalid interval 0 0 0

INT Interval 0 0 1

NV Not a date value 0 1 0

FLO Floating date 0 1 1

NK Not known 1 0 0

BoT Beginning of time 1 0 1

Cal Calender date 1 1 0

EoT End of time 1 1 1

Encoding schemes overview

The 32 bit encoding used starts with the signature as the MSBs, year with sign, month and
day following. Seven bits are used for other purposes.

The basic 'ymdhms' principle is that the DMY components are encoded as you'd expect
with the 'h:m:s' part of the timestamp being used for extra information of which the hours
units is used to carry the signature and the seconds for offset in amounts of 64 years to
extend the year range.

Encoding wrinkles

'Last day of Feb' is encoded as 31st Feb.

Encoding intervals

The Ymdhms encoding is intended to make interfacing with legacy systems convenient.
There is no use case for encoding intervals in Ymdhms so this is not supported.

I Overview
Page 9 of 39

Table 3

Day Description Ymdhms 32 bit

General date layout yyyy-mm-dd 0s:??:00 sss±yyyy|yyyyyyyy|mmmmdddd|dwww×vf0

General interval layout Not supported 001±yyyy|yyyyyyyy|mmmmdddd|d××××v×1

NVI Not valid interval 1901-12-13 02:00:01 000×××××|××××××××|××××××××|×r r r r 0×1

NV Not valid date 1901-12-13 02:0r:00 010×××××|××××××××|××××××××|×r r r r 0×0

NK Not known 1901-12-13 04:00:00 100×××××|××××××××|××××××××|××××××××

BoT Beginning of time 1901-12-13 05:00:00 101×××××|××××××××|××××××××|××××××××

EoT End of time 2038-01-18 07:00:00 111×××××|××××××××|××××××××|××××××××

Year only eg 2009 2009-01-01 03:03:00 01100111|11011000|00000000|0000×100

Year-month only eg Mar 2009 2009-03-01 03:01:30 01100111|11011000|00110000|0000×100

Fully specified eg 14th Mar '09 2009-03-14 06:00:00 11000111|11011000|00110111|0110×110

× ... not used s ...signature w... day of week
r ... reason code v ... validity f ... fully specified
i ... signs z ... zero m/d q ... 64-year offset

I Overview
Page 10 of 39

3Delphi/Pascal and Javascript. Javascript is the master.

5 API and methods

API components

So far there have been two practical implementations.3 These have demonstrated that the
d/a/y object itself needs support from utility functions, a configuration, and an
'environment' with 'appendices' for morphing user interactions between languages.

utility eg. Constants, converting to/from Julian day
configuration eg. Default settings
environment eg. Interpreting string input
day object value store, constructors, tests etc.
appendix Allowable names and short forms of months

There is also an extensive suite of tests.

Abstract constants

NV Not a valid day value. An error or uninitialised.
NK Not known. We ‘know we don’t know’.
BoT Beginning of time.

(a) A day earlier than we’re otherwise worried about.
(b) An unknown past date.

EoT End of time.
(a) A day later than we’re otherwise worried about
(b) An unknown future date.

Note: BoT and EoT could be in the future or past respectively if we want to use them in

that way relative to another in the sense of “some earlier date or “some later date”.

Methods

These are described in part III in a way that should be independent of any implementation
so that the normal behaviour, boundary conditions and error conditions can be accurately
specified. (Implementations are bound to differ in some technicalities but the algorithms
and binary representations should be identical.)

Method summary

• Constructor takes strings, string representations of timestamps (eg database results),
32-bit numbers and hacked 'Unix timestamps'. A large number of input formats are
supported.

• Various output options including formatted string, timestamps for databases, 32-bit
integer, hacked Unix timestamp. See section IV for internationalisation support.

• Tests about single d/a/ys and relationship between them
• Addition, subtraction, comparison.
• Utilities for examining d/a/ys in detail. For example how far through a month is a

given date.

6 Non-linear time problems
Unfortunately for fans of arithmetic, each year doesn't have 13 months of 28 days; instead
we have a non-deterministic world of guesswork.

I Overview
Page 11 of 39

Adding intervals to dates

What are the answers to the following (remembering 2008 is a leap year) :
(a) 1st January 2008 plus 1 month? . 1st Feb
(b) 21st January 2008 plus 1 month? . 21st Feb
(c) 30th January 2008 plus 1 month? . 29th Feb or 1st March
(d) 31st January 2008 plus 1 month? . 29th Feb or 2nd March
(e) 28th January 2009 plus 1 month? . 28th Feb or 25th Feb
(f) 29th January 2009 plus 1 month? 28th Feb or 1st March or 26th Feb
(g) 30th January 2009 plus 1 month? 28th Feb or 2nd March or 27th Feb
(h) 31st January 2009 plus 1 month? . 28th Feb or 3rd March
(i) 29th February 2008 plus 1 year? . 28th Feb or 1st March 2009

Are we all agreed with (a)? It is pretty reasonable that one month after the first of any
month will be the first of the next month. And so for the 2nd, 3rd and so on... What about
the last day of the month? Shouldn't a one month addition map to the last day of the next
month? By this reasoning (d) and (h) should give the last day of February. (Different
because 2008 is a leap year.) What about the 2nd and 3rd from last days? Shouldn't these
map to the 2nd and 3rd from last days of the next month? (f) is 2 days before the end of
January so surely the result should be two days before the end of February?

How many days in a year?

365 or 366. How can we tell which? If we have a real date to add days to then we can do
this by converting the date into a Julian date number adding the days then converting
back to YMD. But what happens if we're 'doing arithmetic' that involves juggling years,
months and days without a real base point in time? Is 1 year plus 365 days always exactly
2 years?

Addition rules

In rough summary (details in Part III section 2) when adding a combination of YMD to a
date add the years on first, then the months, finally the days. When adding months adjust
the day of the result month to reflect any different length so that for example the last day
of one month will be hacked to the last day of another. Days are added on using a real
calendar.

When adding two intervals together provide alternative methods. Either fudge as scalar
using fixed conversion factors between years, months and days or use some base date to
act as a surrogate datum for the method used for real dates.

There will be additional rules for rules for floating dates and not fully specified dates but
these complications are better dealt with in the specification of the functions involved.

II Representation
Page 12 of 39

Representation
In this part we

• define logical model components

• define a 32 bit encoding scheme

• define how existing y-m-d h:m:s timestamps can be used, with limitations, in
a compatible way.

1 General
All encodings are lossless.

Two storage representations both using 32bits are specified. The Ymdhms timestamp
version is provided to simplify interoperation with other libraries where it isn't convenient
to implement a 'clean sweep'.

The standard Unix timestamp potentially suffers from limited year range (1970-2037) but it
is possible to extend this to span from 1806 BC to 5746 AD.

The 32 bit encoding gives +/- 4095 years so for practical purposes there is no need to
obtain an offset for the year ‘from somewhere’. Spare bits in the encoding are used to store
shortcut information.

Intervals are identifiable as being distinct from dates. They should sort numerically in both
encodings with from the most negative to the most positive. There is not meant to be any
correlation between the encoded values of say the day "12th March" and the interval "+0y
3m 12d".

2 Logical signatures
As well as the constants NV,NK,BoT and EoT we define

INT ... Interval
NVI ... Not-valid interval

Table 4

Mnemonic Meaning Binary Decimal

NVI Invalid interval 000 0

INT Interval 001 1

NV Not a date value 010 2

FLO Floating date 011 3

NK Not known 100 4

II Representation
Page 13 of 39

BoT Beginning of time 101 5

Cal Calender date 110 6

EoT End of time 111 7

These signatures will appear as high bits embedded in the 32-bit encoding and in the units
of the hours element of a Ymdhmsf timestamp.

3 32bit encoding scheme
From most significant to least significant bits:

Table 5

Bits Size Usage Notes

31 - 29 3 Signature See table 4

28 1 Sign 0:+ve 1:-ve

27 - 16 12 Year 0 ... 4095

15 - 12 4 Month 1:Jan ... 12:Dec 0 is legal

11 - 7 5 Day of month 1 ... 31 0 is legal

6 - 4 4 Day of week (Fully specified) 1:Mon ... 7:Sun 0:Undefined

Not valid reason code (NV) See table 8

3 1 Not used

2 1 Valid flag 1:Is validated

1 1 Fully specified 1:Is fully specified

0 1 Interval 1:Is interval

• The sign is applied to the year for a date or to a whole interval.
• Day of week is for convenience. Should be set to 0 if not applicable or not given
• Note that from an encoding point of view it is possible to have a signature of NV

followed by Y,M,D values and a not-valid reason. There is a possible use for this where
dates are being supplied in bulk by a process that can't reject the data outright.

• Bits 2 - 0 are for quick-reference convenience

4 Ymdhms Unix timestamp encoding scheme
The purpose of this encoding is to be able to store and exchange dates with legacy
systems. It is not intended to be used as a comprehensive storage format.
The 'hh:mm:ss' part of the timestamp is hijacked to represent additional information.
• The seconds field is used to store an offset from 1970 in units of 64 years.
• This encoding does not support intervals.

II Representation
Page 14 of 39

Table 6

Element Used for Notes

h-tens Always 0

h-units Signature See table 4

m-tens Offset sign 0:+ve 1:-ve

m-units YMD Zero flags Bits set if missing

Invalid reason (NV only) See table 8

ss 64-year offset 1970 is base

• The function that 'reads-in' timestamps can be commanded to mask-off the hh:mm:ss
part of the number where these may contain spurious data. Typically this would occur
where existing timestamps generated by another system are being read. With these
bits masked-off the normal Unix timestamp limitations apply.

• As the Unix timestamp can suffer from a severely truncated year range we use the
seconds field to store a count of offsets, each of 64 years, to shift the 'yyyy' value if
required. This is based on 1970. For example a 'yyyy' of 7 and an offset of +2 would
represent 1970 + (2 * 64) + 7 = 2105. Similarly 1066 would be represented by an
offset of -15 and a year of 56.

• Floating and partially specified dates cause problems because there is no way to
specify zero years, months or days in the standard Ymdhms scheme. This can be
handled by using three flags combined to tell us when to ignore the Y,M or D values.

For example "March 1988" would be flagged as 001 or 1 minute, "2009" as 011 or 3
minutes.

• A special convenience value of 00:00:00 indicates a fully qualified calendar day

5 Javascript Date conversion
Javascript dates are very peculiar in that they have two sorts of years. Only the
get/setFullYear() methods are reliable. (Ignore get/setYear() methods!)

The full year range is ample for us so we don't need to encode epoch offsets as we do with
the 32-bit timestamp. However we still need to use H and M for Days that are not fully
specified calendar dates. We will use the same date range as for the 32-bit native
encoding.

Earliest calendar day : 1st Jan 4095 BC
Latest calendar day : 31st Dec 4095 AD

The full encoding is

II Representation
Page 15 of 39

Day signature D M Y H M S Comment

NVI 30 Dec 4096 BC 10 reason 0

INT 30 Dec 4096 BC 11 0 0 Not supported

NV 30 Dec 4096 BC 12 reason 0

FLO/partial d m y 13 mask 0 JS allows year zero!

NK 31 Dec 4096 BC 14 0 0

BOT 31 Dec 4096 BC 15 0 0

Earliest CAL 1 Jan 4095 BC 0 0 0 Fully specified cal dates
have all zeroes for time

Latest CAL 31 Dec 4095 0 0 0

EOT 1 Jan 4096 17 0 0

Where reason is the not valid reason and mask is three bits (y-m-d) set to 1 if element is to
be ignored. For example 28 March would be 1-3-28 13:1:0

• Date object with zero years are not allowed as inputs to Day conversion routines.

Table 6

Element Used for Notes

h-tens Always 0

h-units Signature See table 4

m-tens Offset sign 0:+ve 1:-ve

m-units YMD Zero flags Bits set if missing

Invalid reason (NV only) See table 8

ss 64-year offset 1970 is base

• The function that 'reads-in' timestamps can be commanded to mask-off the hh:mm:ss
part of the number where these may contain spurious data. Typically this would occur
where existing timestamps generated by another system are being read. With these
bits masked-off the normal Unix timestamp limitations apply.

• As the Unix timestamp can suffer from a severely truncated year range we use the
seconds field to store a count of offsets, each of 64 years, to shift the 'yyyy' value if
required. This is based on 1970. For example a 'yyyy' of 7 and an offset of +2 would
represent 1970 + (2 * 64) + 7 = 2105. Similarly 1066 would be represented by an
offset of -15 and a year of 56.

• Floating and partially specified dates cause problems because there is no way to
specify zero years, months or days in the standard Ymdhms scheme. This can be
handled by using three flags combined to tell us when to ignore the Y,M or D values.

II Representation
Page 16 of 39

4 Intervals are never valid in Ymdhms

For example "March 1988" would be flagged as 001 or 1 minute, "2009" as 011 or 3
minutes.

• A special convenience value of 00:00:00 indicates a fully qualified calendar day

6 Encoding wrinkles
'Last day of February' is represented by 31st February.

7 Invalid reasons
It may be useful to include more details about the reason why a value is deemed invalid.
See Table 8. This feature is provided so that conversion functions don't throw exceptions
for data-value related issues. (Exceptions being reserved for programming issues such as
an unsuitable type being supplied as an argument.)

8 Integer sorting
The 32-bit encoding will sort (unsigned) firstly in the order of signatures. Intervals will sort
with negative before positive and then by magnitude. Dates will sort in 'natural forward
order' with 2007 before January 2007 before 1st January 2007.

9 Constants
Encoded abstracts

Table 7

Description Mnemonic Ymdhms 32 bit

Not valid interval4 NVI 1901-12-13 00:00:00 1

Not known NK 1901-12-13 04:00:00 2147483652

Beg. of time BoT 1901-12-13 05:00:00 2684354564

End of time EoT 2038-01-18 07:00:00 3758096388

The odd years are chosen to reliably lie within the range of Unix timestamps.

Not valid reason codes

NV and NVI reason codes are used when a function produces an invalid result and we
want to find out a little bit more about why.

Possible value 0 - 15

Table 8 Not valid reason codes

Value Procedure Description

1 DateFromString An empty string or stupidly long string was provided. (max
40 characters)

MonthOnly Sourced from unsuitable date

II Representation
Page 17 of 39

2 DateFromString Zero, more than three (d,m,y) tokens, or more than one alpha
tokens provided.

3 DateFromString Unable to interpret a non-numeric element

4 DateFromString Year element is missing, illegal or not 2 or 4 characters. Or
month must be followed by year or day.

LastDay
FirstDay
RangeEnd

Year was undefined

5 DateFromString Unable to parse (eg dmmyy needs an 0 at the front.) or can't
tell day-month order.

6 DateFromString Unsuitable number element. (Might be that two-digit years
have been outlawed by the environment setting
TWO_DIGIT_FIX.)

7

Where a function emits an integer result and 0 is a valid in-band value the constant iNV is
returned to indicate an inappropriate/erroneous value. This is declared to be -9999999.

II Representation
Page 18 of 39

Sometimes it is necessary to scale years, months and days. This involves approximations:
1 year = 365.25 days
1 year = 12 months
1 month = (365.25 / 12) = 30.4375 days

10 Limits
The Unix timestamp compatibility mode may be convenient to use when relating to legacy
systems. This is 'harmless' so long as:

(a) The legacy system makes no practical use of the hh:mm:ss part.
(b) When reading using the FromTimestamp() function the appropriate bit masking

flag is used to ignore or use the hh:mm:ss part.
(c) If d/a/ys are written to a Timestamp they will wrap every 64 years. This means

that dates after 2033 won't be correct if subsequently read as a conventional
timestamp.

Table 9 Encoding limits

Property 32-bit encoding

and js Date

Conventional

Unix timestamp

Extended Ymdhms

timestamp

Earliest date 1st Jan 4095 BC 13th Dec 1901 1st Jan 1806 BC

Latest date 31st Dec 4095 AD 19th Jan 2038 31st Dec 5746 AD

Largest interval ± 4095y 12m 31d

To make things simple, internal checking will only look at the year component and only
allow years where the whole year is valid. This means that the conventional Unix range is
restricted to 1st Jan 1902 to 31st December 2037.

11 Notes
By convention in everyday calendars there is no year-zero. The year before 1AD is 1BC.

III Functions
Page 19 of 39

Functions
In this part we define the API and how it is used.

With traditional 'point-in-time' dates there are basic operations that don't need
much definition. With a richer object that can be real, abstract, a point-in-time, a
period, floating or fixed, an interval or representing some sort of problem we need
a richer and more explicitly defined set of functions.

1 Background

D/a/y objects

Throughout the following we define the functions or methods used to manipulate day
objects / types / classes. The object or class model is:-

Day

/)Date Sub-class of Day used for calendarish purposes

.)Interval Sub-class of Day used for arithmetic and offset purposes

However every Day object knows whether it is a Date or an Interval by simple introspection
so some implementers may chose to ignore this level of sophistication.

To give implementation programmers the greatest flexibility we have avoided explicit
references to objects, constructors and methods although it should be clear from the
following specification how these would be implemented.

Where Day is specified in the following it could be either an Interval or a Date.

Conventions

• The format used is functional for clarity. The same API would be used for object
methods except typically for the omission of the first argument. For example:

Function style bool ² IsValid(Day Day)
Method style bool ² Day.IsValid()

• For clarity this style will be used to indicate objects/types in the text while plain "day"
will refer to something like Thursday or 5th August.

• Conventionally functions/methods and argument placeholders are initially capitalised.

• The types of arguments is given after variable labels. The details of various string
types have been ignored.

• For purposes of illustration many examples are shown with string values where a
proper day argument would be used. eg.

IsValid("37th March 2008")

would be used for illustration instead of something like
var Day d = new Day(2008,3,37);
var Bool b = d.IsValid();

III Functions
Page 20 of 39

Error handling

There are two ways these functions can 'report something is wrong':
• By throwing an exception
• or returning a value with a specific meaning.
Exceptions are used for 'programming' issues such as inappropriate arguments. Data-
related problems such as for example trying to create a date for the "75th January" will
normally return NV or NVI, possibly with additional information along the lines of "That's
not sensible - so here is a result with NV".

• Boolean results only return true if the test is definitely true. All errors and uncertain
results return false.

• Functions that return Date will return NV (with a reason code) if a definite answer
cannot be computed.

• Functions that return Interval will return NVI (with a reason code) if a definite answer
cannot be computed.

• Some integer functions return 0 as 'unknown/invalid' for example
DayOfWeek("EoT") ÷ 0

• Where 0 is a valid in-band integer a special value iNV is used to indicate inability to
return a sensible result.

Where strong typing is available we expect a compiler to reject most inappropriate types of
function parameters. However there will be some situations where two arguments may
both be a Date or both be an Interval but cannot be mixed. We leave the exact strategy for
dealing with this to the good sense of the programmer. (For example Before() is specified
here as taking two Days which need to be the same. One way of dealing with this is to
specify two Before() functions with different argument patterns, one with both Dates the
other with both Intervals. Alternatively the programmer might test at run-time and raise an
exception if mixed arguments were detected.)

Conversion constants

Where it is not possible or desirable to use an actual calendar as the basis for date
arithmetic it is necessary to convert years and months to days.

1 year = 365.25 days
1 month = 30.4375 days

2 Methods overview
Dates and intervals

Date objects and interval objects are obviously closely related (in fact they may be
implemented as a single class) but are not interchangeable when it comes to usage. It is
also important for a programmer to consider when it makes sense to work with the scalar
quantity of days and when in DMY intervals. For example adding 30 days is not the same
thing as adding one month where an entirely different algorithm is used.

Julian dates

Fully specified dates can be converted to and from Julian dates. A Julian date is just a
'serial day count'. This is ideal for finding the number of days between two events with
ease, however should we want to accurately express this in YMD form we need to have an
actual calendar to work with so for example we can't use the Julian day method to
compute the YMD difference between 1st Feb (year unspecified) and 1st March (year
unspecified). Neither can we find the number of days difference between these two
floating dates unless we provide a surrogate year.

III Functions
Page 21 of 39

Rules for date arithmetic

In Part I section 6 we discussed the difficulties with adding intervals to dates. Here are the
main rules:
AR1: When adding days alone to a date:

Count according to the real calendar.

AR2: When adding days alone to an interval select from these methods:
a Convert on the basis of 365.25 days per year and 30.4375 days per month
b Use some real base date as a datum to convert the days into YMD then apply

rule AR7 then subtract the base date from the result to give an interval.

AR3: When adding months alone to a date:
Convert the days part of the date into fractions of that month. Then add the
months, carrying base 12 as required. Now convert the fraction back into days
according to the actual length of the new month.

AR4: When adding months alone to an interval:
Add to months, carrying base 12.

AR5: When adding years alone to a date:
If the month component of the date is February and the number of years to
add modulo 4 is not 0 then use rule AR3 with 12 times the number of months
as years otherwise simply add the years.

AR6: When adding years alone to an interval:
Simply add the year components.

AR7: When adding a combination of YMD to a date:
Apply AR5, AR3 and AR1 in that order.

AR8: When adding a combination of YMD to an interval:
Convert both intervals to days then back to YMD using 365.25 days per year
and 30.4375 days per month. (Compare with AR2b.)

(There are variations and exceptions for floating and partially specified dates but it is
probably better to leave those to the detailed method specifications.)

3 Functions taking no arguments

Date ² Today()
Returns a date object with the value of ‘today’ as understood by the operating system.

Date ² BoT()
Returns a date object with the value of Beginning-of-time.

Date ² EoT()
Returns a date object with the value of End-of-time.

Date ² NK()
Returns a date object with the value of Not-known.

III Functions
Page 22 of 39

Date ² NV()
Returns a date object with the value of Not-valid and a reason code of 0.

4 Tests taking a single day argument and returning a boolean

bool ² IsValid(Day Day)
Returns true if Day is any other value than NV or NVI.

bool ² IsValidDate(Day Day)
Returns true if Day is a Date with any other value than NV.
Returns false if Day is an Interval.

bool ² IsValidInterval(Day Day)
Returns true if Day is a Interval with any other value than NVI.
Returns false if Day is an Date.

bool ² IsNotKnown(Date Date)
Returns true if Date has the value of NK.

bool ² IsBoT(Date Date)
Returns true if Date has the value of BoT.

bool ² IsEoT(Date Date)
Returns true if Date has the value of EoT.

bool ² IsGiven(Date Date)
Returns true if Date is a calendar day, NK , BoT or EoT.

bool ² IsKnown(Date Date)
Returns true if Date is a calendar day or BoT or EoT.

bool ² IsSpecific(Date Date)
Returns true if Date is fully specified with a year, month and date-day.

bool ² IsBC(Date Date)
Returns true if year of Date < 0

bool ² IsFloating(Date Date)
Returns true if Date is specified without a year.

bool ² IsInterval(Day Day)
Returns true if Day has the INT signature ie. represents an interval.

bool ² IsRealPeriod(Date Date)
Returns true if Date is specified with either

(a) year only
(b) year and month only

III Functions
Page 23 of 39

bool ² IsCalendar(Date Date)
Returns true if Day is specified with either

(a) year only
(b) year and month only
(c) year month and day.

The following examples are not calendar days: "15th ", "June", "June 15th ".
Note : Intervals are not calendar days even though they may be fully specified.

bool ² HasMonth(Day Day)
Returns true if Day has a month specified.

bool ² HasDay(Day Day)
Returns true if Day has a day specified.

bool ² HasYear(Day Day)
Returns true if Day has a year specified.

5 Functions taking a single day argument and returning a day

Date ² FirstDay(Date Date)
Returns the earliest possible day for the argument. A typical example would be finding the
first day of a month.
• If Date is fully specified (ie with D,M and Y) the result will be an identical Date
• The constants NV, BoT and EoT return themselves
• The constant NK returns BoT

Date ² LastDay(Date Date)
Returns the latest possible day for the argument. A typical example would be finding the
last day of a month.
• If Date is fully specified (ie with D,M and Y) the result will be identical to Date
• The constants NV, BoT and EoT return themselves
• The constant NK returns EoT

Date ² Next(Date Date)
Returns the next day, month or year depending on the precision of the argument. For
example “March 2008" would return “April 2008" while “12th March” returns “13th March”.
• Calendar dates return the next calendar date
• The constants NV, NK, BoT and EoT return themselves
Examples

Next(2007) ÷ 2008
Next(June) ÷ July
Next(June 2007) ÷ July 2007
Next(28 Feb 2007) ÷ 1 Mar 2007
Next(28 Feb 2008) ÷ 29 Feb 2008 (Leap year)
Next(29 Feb 2008) ÷ 1 Mar 2008
Next(15th) ÷ 16th

Date ² Previous(Date Date)
Returns the previous day, month or year depending on the precision of the argument. (See
Next() for details.)

III Functions
Page 24 of 39

Date ² MonthOnly(Date Date)
Return a date with just the month component of the argument
• Dates that have no month component return NV
• The constants NV, NK, BoT and EoT return NV
See also Month().

Date ² YearMonthOnly(Date Date)
Return a date with the year and month components of the argument. To be a valid result
the argument must have at least one of year and month specified.
• Dates that have no year component and no month component return NV
• The constants NV, NK, BoT and EoT return NV

Date ² YearOnly(Date Date)
Return a date with only the year component of the argument
• Dates that have no year component return NV
• The constants NV, NK, BoT and EoT return NV
See also Year().

Date ² Middle(Date Date)
Return a date in the middle of the RealPeriod supplied.
• Dates that are not fully specified or are not a real period return NV
Examples

Middle(2009) ÷ 2 July 2009
Middle(March 2009) ÷ 16 March July 2009

Interval ² Period(Interval Interval)
This has the effect of stripping any negative sign from the interval.

6 Other single argument functions
See also section 11

integer ² Signature(Day Day)
Return an integer representing the signature constants

NVI ÷ 0
INT ÷ 1
NV ÷ 2
FLO ÷ 3
NK ÷ 4
BoT ÷ 5
Cal ÷ 6
EoT ÷ 7

integer ² NVReasonCode(Day Day)
Return an integer indicating a reason (if any) associated with NV or NVI. This would most
commonly be used to report on failures of FromString().

This is meant to be NV/NVI without a reason ÷ 0
Day is not NV or NVI ÷ iNV
See table 8 for meanings of values 1 .. 7 which vary with the method that created it.

III Functions
Page 25 of 39

integer ² DayOfWeek(Date Date)
Return an integer indexing the day of the week.

Not fully specified. No date-day : ÷ 0
Monday ... Sunday ÷ 1 ... 7

integer ² DayOfMonth(Day Day)
Return an integer indexing the day of the month.

Date :
Not fully specified. No day component : ÷ 0
"Last day of February" ÷ 31

Interval:
Day date is 0 : ÷ 0

integer ² MonthNumber(Day Day)
Return an integer indexing the month.

Not fully specified. No month component : ÷ 0
January ... December ÷ 1 ... 12

integer ² DaySerial(Date Date)
Return an integer that matches the equivalent Unix timestamp.

Date is not a fully specified date: ÷ iNV [iNV = 7 Sep 1969 06:13:21]
Dates before 1st January 1970 : ÷ negative
Day is 1st January 1970 : ÷ 0
Dates after 1st January 1970 : ÷ 1...

• Dates after 2037 will continue to increase ignoring any Unix wraparound on Jan 19th

2038.
• Dates before 1901 will continue to be more negative.
See also ToJulianDayNumber().

integer ² YearNumber(Day Day)
Return an integer for the year component of the day.

Calendar day (AD) : ÷ positive integer
Calendar day (BC) : ÷ negative integer
Day is a floating date or constant : ÷ iNV
Interval : ÷ signed year value

float ² AsDays(Interval Interval)
Return (an approximation to) the number of days represented by the combined components
of the interval. The day, month and date-day components are summed using the
multipliers :

Each year is 365.25 days
Each month is 30.4375 days

• iNV is returned if Interval is NVI.
• The result will be negative if the sign of a Interval is negative.

III Functions
Page 26 of 39

7 Functions taking two arguments returning boolean
Unless specifically allowed do not mix Dates and Intervals.

bool ² SortsBefore(Day1 Day, Day2 Day)
Dates:

Returns true if Day1 comes before Day2 in the sorting sequence. Sorting sequence is
roughly based on calendar date but with the following enhancements in increasing
sort value:

9 NV (lowest)

9 BoT

9 Date-days alone eg "15th " < "16th "

9 Months and date-days only eg "March" < "March 1st " < "March 2nd "

9 NK

9 Days with years specified.

Missing month and date-day components are equivalent to 0 in a Y-M-D value
system. eg "2007" < "Jan 2007" < "1st Jan 2007".

9 EoT (highest)

Intervals:
Return true if the magnitude of Day1 is smaller than the magnitude of Day2.
The following sequence illustrates the sort order:-

0y 0m 0d < +1y 0m 0d < -2y 0m 0d < -5y 4m 3d
See also Before()

SortsBefore() and Before()

These are very different functions and it is important that their different
applications are understood. In D/a/y "March" sorts before "March 7th" but
doesn't logically come before it. Negating the result of SortsBefore() is
equivalent to switching the order of the arguments but this is not the case

with Before().

bool ² Before(Day1 Day, Day2 Day)
Dates:

Returns true if Day1 is definitely before Day2.
• Anything except EoT before EoT will return true
• BoT before anything except BoT will return true
• All other constants either as Day1 or Day2 will return false
• Non-calendar dates must be the same form to be compared
Examples

Before("April 2007","1 April 2007") ÷ False
Before("1st April 2007","April 2007") ÷ False
Before("March 2007","1st April 2007") ÷ True
Before("2007","EoT") ÷ True
Before("EoT","EoT") ÷ False
Before("June","August") ÷ True
Before("11th June" , "August") ÷ True
Before("11th June 2007" , "August") ÷ False

III Functions
Page 27 of 39

The last two examples show that if both days omit the year component we can
compare, but if one contains a year they are no longer comparable.

Intervals:
Return true if Day1 comes 'before' Day2 as if years were masquerading as dates
starting at Zero AD. Negative values come before positive as illustrated by the
following sequence: -5y 4m 3d < -2y 0m 0d < 0y 0m 0d < +1y 0m 0d

See also SortsBefore()

bool ² After(Day1 Day, Day2 Day)
Returns true if Day1 is definitely after Day2. See Before() for details.
• Anything except BoT after BoT will return true
• EoT after anything except EoT will return true

bool ² Contains(Date1 Date, Date2 Date)
Returns true if Date2 is the same as, or within a period given by Date1.
• Returns false if any constants appear as any of the arguments.
• Date2 must have the same or greater precision than Date1.

Examples:
Contains("2007","March") ÷ False
Contains("2007","March 2007") ÷ True
Contains("2007","4th March 2007") ÷ True
Contains("4th March 2007","4th March 2007") ÷ True
Contains("March","4th March") ÷ True
Contains("March 2007","4th March") ÷ False

8 Functions taking two arguments returning scalar

These functions are intended to provide scalar time differences between calendar dates.
Days do not need to be fully specified except that both arguments need to be specified to
the same precision.

signed integer ² DaysDifference(Date1 Date, Date2 Date)
Return the number of calendar days between the two dates.

This function relies on converting each date into an integer using JulianDayNumber() then
performing a simple subtraction.

• If applying JulianDayNumber() to either argument gives iNV the result is iNV...
• ... except if only the day component of both arguments is set,
• The result can be negative if Date1 is later than Date2
• Both arguments must have the same precision

Note that the DaysGap() function works differently and has other restrictions. This
function is best only used for fully specified dates.

signed integer ² DaysGap(Date1 Date, Date2 Date)
See Gap() for details.

• iNV returned when Gap() returns NVI.

III Functions
Page 28 of 39

Signed integer ² Overlap(Date1 Date, Date2 Date)
Return the number of days a day object representing the least possible difference between
the arguments.

III Functions
Page 29 of 39

signed float ² MonthsDifference(Date1 Date, Date2 Date)
Return (an approximation) to the calendar months between the two dates.

• If any of the arguments are constants the result is iNV
• Both arguments must have the same precision
• 1 year is 12 months
• 1 day is 1/(365.25/12) or 1/30.4375 or 0.0328542 months.

signed float ² YearsDifference(Date1 Date, Date2 Date)
Return (an approximation) to the calendar years between the two days.

• If any of the arguments are constants the result is iNV
• Both arguments must have the same precision
• 1 month 1/12 years or 0.083333... years
• 1 day is 1/365.25 years or 0.00327378 years.

Integer ² SmallestOverlap(Date1 Date, Date2 Date)

This returns the smallest possible number of days for which both dates are concurrent.

If either date is fully specified this will return either 1 or 0.

If one but not both of the arguments is a floating date ÷ NVI

Floating dates are converted into real dates based on the current year (and month).

@@@ LOGIC @@@

8 Functions taking two arguments returning Day

Day ² Add(Date1 Date, Interval2 Interval)
Add Interval2 to the Date1.

• If any of NK, NV, NVI, BoT, or EoT appear in either argument then return NV and
reason code

• If Interval2 is more precise than Date1 then return NV and reason code
• If Date1 is floating then any year values resulting from the addition will be discarded

and the result will be floating.
• @@@ Switching???

The order of adding elements is years, months then days. This can make a difference for
example if we add +1y 1m 14d to 20th Jan 2008 year first we get intermediate results of 20th

Jan 2009, 20th Feb 2009 and finally of 6th March. If we add the days first we get an
intermediate result of 3rd Feb 2008, 3rd Mar 2008 and finally 3rd Mar 2009.

III Functions
Page 30 of 39

Day ² Add(Day1 Day, NoYears int, NoMonths int, NoYears int)
Convenience function encapsulating Add(Date,Interval).

Interval ² Add(Interval1 Interval, Interval2 Interval, BaseDate Date)
Sum the respective components of the intervals, carrying as required.

Note, there are two possible methods for carrying out this operation which arises from the
inexact correlation between months and days.

Method 1 : Convert both Intervals to days using AsDays(), add the days together then
convert back to Interval with IntervalFromDays()

Method 2 : Find the exact number of calendar days between BaseDate+Interval1 and
BaseDate+Interval2

If BaseDate is a calendar date then method 2 will be used. (Imprecise BaseDates will use
the earliest possible day for full specification.)

Add("+0y 1m 20d","+0y 0m 20d",NV)
70.4375 days ... 2.314.. months ... 2m 9.56d

÷ +0y 2m 10d

Add("+0y 1m 20d","+0y 0m 20d","1 Jan 2007")
21st Feb 2007 + 20 days ... 13th March 2007

÷ +0y 2m 12d

Add("+0y 1m 20d","+0y 0m 20d","1 Jan 2008")
21st Feb 2008 + 20 days ... 12th March 2008

÷ +0y 2m 11d

Obviously there is plenty of potential for inappropriate and unintended calculation here.

Day ² Subtract(Date1 Date, Interval2 Interval)
The same as AddInterval() but with the sign of Interval reversed.

Day ² Subtract(Day1 Day, NoYears int, NoMonths int, NoYears int)
Convenience function encapsulating Subtract().

Interval ² Subtract(Interval1 Interval, Interval2 Interval, BaseDate Date)
Same as Add(Interval,Interval,Date) with sign of Interval2 reversed.

Date ² EarliestConcurrency(Date1 Date,Date2 Date)
Return the earliest date where Date1 and Date2 could be concurrent.
Return NV if there is no concurrency.

Date ² LatestConcurrency(Date1 Date,Date2 Date)
Return the latest date where Date1 and Date2 could be concurrent.
Return NV if there is no concurrency.

Interval ² Gap(Date1 Date,Date2 Date)
Return a day object representing the least possible difference between the arguments.

@@@

III Functions
Page 31 of 39

The logic is to find the latest possible date indicated by Day1 and 'subtract it' from the
earliest possible date indicated by Day2.

This precision of the result is determined by the most precise argument.

• A positive result indicates there is no overlap. (Illustrated in green in the
accompanying figure.)

• A negative result indicates an overlap. (Red in the accompanying figure.)
• Note the important differences between this function and DaysDifference().

- This function will take mixed precision arguments
- This function can return NVI

If one but not both of the arguments is a floating date ÷ NVI

If both dates are floating then convert into real dates based on the current year (and
month).

Constants appearing in arguments: (Rules in order of application)
• If either argument is NV the result is NVI+?
• If either argument is NK the result is NVI+? .
• Anything (including EoT) and EoT ÷ NVI+?
• BoT and anything (incliding BoT) ÷ NVI+?
• If both arguments are the same: ÷ +0y0m0d

Interval ² Span(Date1 Date, Date2 Date)
This returns the maximum possible span when the arguments are taken in either order.
That is from the earliest early date to the latest late date including both.

This function is commonly used to calculate the duration of an activity when given a start
and end date. For example:

Span("1 April 2008", "3 April 2008") ÷ 3
Take careful note that the result is 3 days not 2 days.

Gap() and Span() can give very different results and vary in detail as well.
Gap("2007","2008") ÷ 0 days ie. 31st Dec 07 to 1st Jan 08
Span("2007","2008") ÷ 2 years ie. 1st Jan 07 to 31st Dec 08

Note the important difference where both arguments are the same.

The function will try to return the highest precision possible given the possibly varying
precisions of the arguments.

If one but not both of the arguments is a floating date ÷ NVI

Constants appearing in arguments: (Rules in order of application)
• If either argument is NV the result is NVI+?
• If either argument is NK the result is NVI+?.
• Anything (including EoT) and EoT ÷ NVI+?
• BoT and anything (incliding BoT) ÷ NK+?

If both arguments are the same: ÷ + 1 unit of maximum significance. For example:
Span("2005","2005") ÷ +1y 0m 0d
Span("Aug 2005","Aug 2005") ÷ +0y 1m 0d
Span("18 Aug 2005","18 Aug 2005") ÷ +0y 0m 1d

III Functions
Page 32 of 39

If Date1 is later in the calendar than Date2 the result is negative.

Floating dates are converted into real dates based on the current year (and month).

9 Output conversion functions
32bit integer ² To32Bits(Day Day)
Returns the D/a/y 32bit integer encoding.

32bit integer ² ToTimestampExtended(Date Date)
Returns the Unix timestamp encoding as extended.
• Use this when it is convenient to overload an existing timestamp field.
• If the date is outside the extended timestamp limits given in table 9 then throw an

Out_of_range exception.@@@

32bit integer ² ToTimestampConventional(Date Date)
Returns the Unix timestamp encoding keeping within the standard limitations. Use this
when another application will be reading this.
• If the date is outside the conventional timestamp limits given in table 9 then throw an

Out_of_range exception.@@@

Signed 32bit integer ² ToJulianDayNumber(Day Day)
Returns the Julian day number.
• If the Day isn't fully specified then return iNV
@@@ Here or somewhere else?

string ² ToString(Day Day, Format string)
Returns a string the format of which is controlled by

(a) The Format argument provided
and
(b) The environment settings (see UseAppendix() below)

If Day is an Interval then report a string in the following format ignoring any Format
argument.

sign years "y" space months "m" space days "d"

eg "-5y 6m 2d" or "+0y 9m 0d"
or

"InvalidInt(" nn ")"

where nn is decimal for a NVI detail code.
eg "InvalidInt(04)"

• The sign is mandatory.
• Interval results will always fit into 14 characters.
• The "y","m" and "d" characters can be altered using an appendix.

Comment: In a well structured class world we could have three ToString methods which

would throw an exception if trying to format an Interval as if it was a Date and vice versa.

Implementors may wish to do this. The reason for describing this here as a generic Day
method (or function taking a Day) with the quirky handling of the unusual possibility of an

Interval is to facilitate unambiguous debugging.

III Functions
Page 33 of 39

string ² NVReasonString(Day Day)
Returns a string version of NVReason() adapted according to the environment settings. (see
UseAppendix() below)

10 Input conversion functions

Day ² From32Bits(Data Unsigned32bit integer)
Inverse of To32Bits().
• If Data cannot be interpreted as a valid D/a/y object then raise an Illegal_binary_input

exception. @@@

Day ² FromTimestamp(Timestamp 32bitInteger, IsExtended bool)
The first argument is a Unix timestamp. The second argument indicates whether the h:m:s
part may contain special information as added by ToTimestampExtended().

Day ² FromJulian(JulianDayNumber(Signed32bit integer)
Creates a Day object corresponding to the given Julian day number
• If there any inconsistencies encountered then raise an exception. (Details to be

finalised.)

Day ² FromString(String string)
Convert the supplied string to a day object.
The way this is done depends on the environment settings. See UseAppendix()
If this returns NV then NVReasonCode() (See table 8) can be used to discover the reason in
more detail.

Normally this will be used to return a Date, but we allow for the format described in
ToString() to be used to create Intervals.

Date ² DateFromYMD(Y integer, M integer, D integer)
Create a day object representing a date from three integers.
• Illegal values will return NV with Reason code.
• Any argument may be zero
• Y may be negative to indicate BC

Interval ² IntervalFromYMD(Y integer, M integer, D integer)
Create a day object representing an interval from three integers.
• Illegal values will return NVI with Reason code.
• Any argument may be zero
• If M or D arguments are out of the normal range they will be converted into the next

higher unit according to @@@ Note that the day to month conversion is approximate
so that for example this function could give a different result to IntervalFromDays()
which uses a real calendar.

• Only one argument may be negative. If so it is applied to the whole interval.
If more than one argument is negative a Too_many_negative_arguments exception is
thrown.@@@

Interval ² IntervalFromDays(D scalar)
Interval ² IntervalFromDays(D scalar , BaseDate Date)
Create an Interval from a given number of days.

III Functions
Page 34 of 39

5This shouldn't be affected by the SetLimit functions as described currently.

The BaseDate argument is a Calendar date to use as a basis for counting from. If it is
omitted Today() is used. If it not fully specified then Earliest(BaseDate) is used. If
BaseDate is not a Calendar date then raise an Invalid_base_date exception @@@.
[@@@ Allowable julian date range?]

BaseDate can make a difference as shown in the examples below.
IntervalFromDays(32,"1st Jan 2007") ÿ +0y 1m 1d
IntervalFromDays(32,"1st Feb 2007") ÿ +0y 1m 4d
IntervalFromDays(32,"1st Feb 2008") ÿ +0y 1m 3d // leap year

11 Environment and utility functions
These functions are settings that operate globally. (Or are class methods.)

null ² SetLimitTo32Bit()
Allow the full range of date calculations supported by the 32bit encoding.
• This is to be the default condition.

null ² SetLimitToUnixConventional()
Disallow internal Date calculations that break the limitations on Unix timestamps. Interval
calculations are unaffected.

null ² SetLimitToUnixExtended()
Disallow internal Date calculations that break the limitations on extended Unix
timestamps. Interval calculations are unaffected.

Date ² GetLimitEarliestDate()
Return a date representing the earliest calendar date supported by the system as
configured by the SetLimit...() functions.

Date ² GetLimitLatestDate()
Return a date representing the latest calendar date supported by the system as configured
by the SetLimit...() functions.

Interval ² GetLimitNegativeInterval()
Return the largest negative interval supported by the system as configured by the
SetLimit...() functions.5

Interval ² GetLimitPositiveInterval()
Return the largest positive interval supported by the system as configured by the
SetLimit...() functions.8

integer ² ConvertUnixTimestampToDay(TimestampInt integer, IsExtended boolean)
The 32bit Unix timestamp representation is converted to a 32bit Day representation.
• IsExtended should be false when the Unix timestamp is assumed to be conventional.

This filters out all the hh:mm:ss information. Alternatively, if the Unix timestamp is
known to have been created as a result of the ToTimestampExtended() function the
hh:mm:ss part will contain fake, but essential data and so the flag should be set true.

III Functions
Page 35 of 39

• This function uses To32Bits() and FromTimestamp() back-to-back and will raise the
same exceptions.

integer ² ConvertDayToUnixTimestamp(DayInt integer , Extended boolean)
The 32bit representation of a Day is converted to a 32bit Unix Timestamp representation.
• This function uses ToTimestamp...() and From32Bits() back-to-back and will raise the

same exceptions.
• If Extended is true use ToTimestampExtended() else use ToTimestampConventional().

integer ² UseAppendix(AppendixName string, LocalPath string, RemoteLocation string)
This function configures the system for input and output translations by giving the name of
an 'appendix' to use.
• See Part IV for details.

string ² AppxErrorDetail()
If UseAppendix() returned an error code this will give some text details.

string ² AppendixName()
Return the name of the currently selected appendix.

integer ² SetAppxValue(Label string, Value string)
Customisation of the environment to override settings obtained from an appendix. Return
a status code:

0 : OK
1 : Label not recognised
2 : Value not suitable

This can only be used to modify keys existing in the currently loaded appendix. If a new
appendix is loaded or the same is re-loaded then the change will be lost.

string ² GetAppxValue(MessageKey string)
Return a message indexed by the MessageKey argument. This is used to provide standard
messages and interpretations depending on the appendix in use. For example

myHelpText = "The first month of the financial year is " +
 GetValue("M4.1");

This facility is also used to provide convenient access to localised error conditions that are
not strictly to do with day manipulation but are likely to be encountered during form filling.
For example "The date must be in the future" or "That is not a valid date here".

array of strings ² AppxShortCuts()
A sorted collection of shortcut keystrokes. The main use of this is to guide the
interpretation of user input.

Each element of the array is in the form
<keystrokes>=<represents_key>

array of strings ² AppxShortCutsExplained()
A sorted collection of shortcut keystrokes with explanations. This can be used to produce
a quick reference help screen for example.

Each element of the array is in the form
<keystrokes>=<represents_text>

III Functions
Page 36 of 39

array of strings ² AppxMonthsArray(Component integer)
Array of month names or abbreviations
• Component selects name style:

1 Full name
2 Three letter display
3 Two letter display
eg myArray = AppxMonthsArray(2); // myArray[1] -> Jan

• First element of the array is 'no month'. Second is January.

IV Internationalisation
Page 37 of 39

Internationalisation
In this part we define how internationalisation can be applied to facilitate user
interaction. Basically this is a set of strings in a dictionary allowing substitutions.
Functions are provided to select a required dictionary, here called an Appendix,
and access the specified key values.

By specifying appendices that are independent of the programming system used to
implement the 'computing' functions of D/a/y they can be written and tested once
then used anywhere. Also the fiddly bits of UI programming such as for example
explaining that a certain date must be in the future, can be dealt with once by the
application programmer.

Input and output framework

When we have to display and obtain input we run into problems of locale and language.
For example on a system I've been using for years inputting "E" into an edit box results in a
display of "End of Time" and inputting "010203" gives 1st of February 2003 displayed as "1
Feb 03", but these are only conventions. Similarly if I input "30 F 03" I'll get an error
"February 2003 doesn't have 30 days".

The solution to differing preferences is to provide some scope for 'plugging-in' the
convention converters and language translations. Each alternative specification is called
an "Appendix". Physically these will be mostly or entirely configuration files accessed by
name.

1 Accessing an appendix
The scheme for accessing an appendix will be a hierarchy of

1 Embedded configuration data built into the d/a/y library 'at compile time'.
2 Local filename
3 URL

The API provides the following function:

integer ² UseAppendix(AppendixName string, LocalPath string, RemoteLocation string)
Attempts to locate a specified appendix by name.

AppendixName is simply a (case insensitive) IETF language tag as defined in RCF
4646. For example "en", "en-US", or "en-UK". This is used in the first instance to locate
the appendix data embedded in the library code.

If LocalPath is supplied this tells the system where on the local file system to look for
appendix files.

If RemoteLocation is supplied this gives the base address of a FTP URI to search for a
file of the same name as defined above. For example
"ftp://somewhere.org/resources/day/appendixes".

IV Internationalisation
Page 38 of 39

6Clearly this is not going to be a simple issue.

This process always looks for an appendix in the order
1 Embedded?
2 Local file system? (If argument is supplied)
3 Remotely available? (If argument is supplied)

and stops when an exact match is found.

There is no cascade or partial matching. If no exact match is found then nothing happens.

If a remote file is located it will attempt (subject to security constraints 6) to copy the file to
the local file system for future reference.

For ease of identification appendix files will, by convention, be named in lowercase with
an extension ".dax" or ".daxu". For example en-us.dax and fr.daxu. The .daxu extension
identifies files in unicode.

Function return values :
0 ... OK
+ve ... Line number of basic syntax error
-1001 ... Appendix not found (embedded)
-1002 ... Appendix not found (local file)
-1003 ... Appendix not found (URL)
-1010 ... Appendix doesn't look like the right content.

• Unsuitable size (>40Kbytes)
• Unexpected formatting or control characters

-1011 ... Unicode not supported
-10xx ... more to come

-2nnn ... Unsuitable value (nnn = line number)
-3000 ... Missing required key (See AppxErrorDetail() function)

2 Logical contents overview
An appendix is divided into a number of sections

0 Administration
1 Lexicon of d/a/y specific terms such as BoT
2 Lexicon of general terms
3 Month names. Various output forms and shortest unique input
4 Day names. Various output forms.
5 Input parameters. Local variations for example day-month order
6 Output user interface. User instructions and requests for re-input.
7 Error messages. Advanced and technical error messages.

IV Internationalisation
Page 39 of 39

7Amongst other things this allows for accurate conformance testing.

Individual items are accessed by key, and possibly index. For example
year.2 ÿ plural of year
DM_ORDER ÿ Standard day-month order

All keys in sections 0 to 5 are required although some may have blank values.
• If any keys in sections 6 and 7 are missing from a loaded appendix then they will be

taken from the default (compiled-in) appendix.
• SetAppxValue() cannot be used to add keys that are not in the currently loaded

appendix.

3 Physical layout
The file is a plain text 'configuration file' in the style familiar to generations of
programmers.
• Variable number of lines of variable length delineated by LF
• Other control characters and space (0x00-0x20) form white space
• Unicode characters @@@
• Comment lines start with #
• Key/values are indicated by key = value
• To embed a new line into text use the token (NEWLINE)
• Blank lines or whitespace-only lines are ignored
The physical order of sections and keys is not to be relied on.

4 Appendix en-uk
It is expected that the English-Great Britain appendix will be 'compiled-in' with the library
code and be the default.7 However developers should always initialise their preferred
appendix even if they are firmly in the en-uk zone and not rely on it being the default. (It is
expected that other common appendixes will be compiled-in also.)

5 Low level functions
Implementations will need to be able to read and validate raw text files and possibly
unicode. This can be wrapped and buffered by UseAppendix().

Interpret() and TweakEnvironment() give access to the parameters specified in the
appendix as far as an application developer is concerned.

FromString() will need extensive access optimised for parsing. ToString() will need
frequent repetitive access.

