
Data representations

Peter Fox author@vulpeculox.net

Contents

1 Introduction
2 Native 32-bit
3 Javascript date conversion
4 Unix timestamp conversion
5 Arrays and strings

28 May 2015 (10:54AM)

1 Introduction

Efficient storage of Days is important as is the ability to sort sensibly out-of-the-box.
The native 32-bit encoding supports dates and intervals and is the preferred method of
data storage and transmission.

Existing systems may require interfacing with Day and this can cause issues as they
have no special values and don't support partial dates such as say 'May 2013'. For these
we create or consume hacked versions which use the hours, minutes and seconds
elements to give a reasonable coverage of important Day values. Sometimes we want
to store and read these bits and in others ignore them. For example to put a 'End-of-
time' value into a legacy database 'date-time' field for later retrieval we will need the
bits, while with a 'date of last login' field they would be ignored.

In general Days should be inter-operable with existing date-time systems with minimal
code changes.

All encodings should be lossless in the Day -> Encoding -> Day sequence.

Intervals are only supported by the native 32-bit encoding.

Conversion functions
For all new data storage use the 32 bit version

myInt32var = myDay.To32Bits();
myDay = new DAYo(myInt32var);

Javascript dates use
myJsDate = myDay.ToDate(); // if h,m,s in myJsDate are 0 then y,m,d are honest
myDay = new DAYo(myJsDate);

Database strings will probably use
myDateTimeStr = myDay.ToYmdhms('YMDHMS');
myDay = new DAYo(myDateTimeStr, DAYu.strTypeExtendedUnix);

2 Native 32-bit

From most significant to least significant bits:

Table A – Native encoding specification

Bits Size Usage Notes

31 - 29 3 Signature See table in main document

28 1 Sign 0: –ve 1:+ve

27 - 16 12 Year 0 ... 4095

15 - 12 4 Month 1:Jan ... 12:Dec 0 is legal

11 - 7 5 Day of month 1 ... 31 0 is legal

6 - 4 4 Day of week (Fully specified) 1:Mon ... 7:Sun 0:Undefined

Not valid reason code (NV) See table in main document

3 1 Not used

2 1 Valid flag 1:Is validated

1 1 Fully specified 1:Is fully specified

0 1 Interval 1:Is interval

• The sign is applied to the year for a date or to a whole interval.
• Day of week is for convenience. Should be set to 0 if not applicable or not given
• Note that from an encoding point of view it is possible to have a signature of NV

followed by Y,M,D values and a not-valid reason. There is a possible use for this
where dates are being supplied in bulk by a process that can't reject the data
outright.

• Bits 2 - 0 are for quick-reference convenience
• This will sort according to signature with BC dates before AD dates
• Day and month are zero-based so 8 Feb 2015 will be encoded as 2015,1,7

Table B – Native encoding layout

Day Description 32 bit

General date layout sss±yyyy|yyyyyyyy|mmmmdddd|dwww×vf0

General interval layout 001±yyyy|yyyyyyyy|mmmmdddd|d××××v×1

NVI Not valid interval 000×××××|××××××××|××××××××|×rrrr0×1

NV Not valid date 010×××××|××××××××|××××××××|×rrrr0×0

NK Not known 100×××××|××××××××|××××××××|××××××××

BoT Beginning of time 101×××××|××××××××|××××××××|××××××××

EoT End of time 111×××××|××××××××|××××××××|××××××××

Year only eg 2009 01100111|11011000|00000000|0000×100

Year-month only eg Mar 2009 01100111|11011000|00110000|0000×100

Fully specified eg 14th Mar '09 11000111|11011000|00110111|0110×110

× ... not used s ...signature w... day of week
r ... reason code v ... validity f ... fully specified
i ... signs z ... zero m/d q ... 64-year offset

1 This project was started in 2007. Now, in 2015, if you're using a system that has the original

UNIX timestamp limitations then you should go back to using stone circles to work your dates.

3 Javascript Date

WARNING Javascript dates are full of tricky trips!

• get/setYear() are faked. Always use get/setFullYear().

• Years less than 100 are assumed to be 1900+

• Javascript date has a year 0! In a real calendar the year after 1BC is 1AD.

• get/set and Date() constructor work on timezoned dates which jiggle about. The
following may fail depending on the current date:

 d = new Date(2010,1,1);

console.log(d.getDate() == 1); // day of month _should be_ 1

• Always use UTC version of Date methods.

• To create a new date from scratch use d = new Date(Date.UTC(y,m,d,h,m,s));

The full year range is ample for us. We will use the same year range as for the 32-bit
native encoding. However we still need to use H and M for Days that are not fully
specified calendar dates.

Earliest calendar day : 1st Jan 4095 BC
Latest calendar day : 31st Dec 4095 AD

Note that Day has no year zero but Javascript allows it. We will encode 1BC as -1.

See the external encoding table below

4 Unix timestamp
The object of this is to allow direct plug-in to existing systems. However we don't want
to be held hostage by the possibility of the 2038 limit so we hijack the seconds to give
us a years offset for the main year value.1

See the external encoding table below

Table C – External encoding

Day signature D M Y H M S Comment

NVI 30 Dec 4096 BC 10 reason 0

INT 30 Dec 4096 BC 1 0 0 Not supported

NV 30 Dec 4096 BC 2 reason 0

FLO d m 0 3 mask 0 JS allows year zero!

NK 31 Dec 4096 BC 4 0 0

BOT 31 Dec 4096 BC 5 0 0

Earliest CAL 1 Jan 4095 BC 0 0 0 Fully specified CALs will
always have 00:00:00 time

CAL d m y 0 mask 0

Latest CAL 31 Dec 4095 0 0 0

EOT 1 Jan 4096 7 0 0

• reason is the not valid reason
• Hours are used as a signature (Note 10=NVI and 0=CAL)
• mask is three bits (y-m-d) set to 1 if element is to be ignored. For example 28 March

(no year) would be encoded as 1-3-28 03:01:00
• Date object with zero years are not allowed as inputs to Day conversion routines.
• d and m are 1 for first and 1 for January. (Contrast with Day where they are zero-

based.)

Table E – Extended Unix encoding specification

Element Used for Notes

hour Signature with 0 as fully
qualified CAL and 10 as
NVI

• NVI isn't supported.
• Hour of 0 should be a real date.
• Same encoding as Javascript

minute YMD Zero flags mask Bits set if missing

Invalid reason (NV only) See table in main document

• Floating and partially specified dates cause problems because there is no way to
specify zero years, months or days in the standard Ymdhms scheme. This can be
handled by using three flags combined to tell us when to ignore the Y,M or D values.

For example "March 1988" would be flagged as 001 or 1 minute, "2009" as 011 or 3

minutes.

5 Arrays and strings
For string input details see other documentation.

There might be interfacing cases where it is convenient to use a string to pass data to
Day or output an array of y,m,d,h,m,s from Day to be consumed by another application.
Both of these are easy to implement as fully qualified dates but we need to be precise if
we're trying to communicate Day-ish data.

